Spaces:
Running
Running
attilabalint
commited on
Commit
·
3d3e872
1
Parent(s):
e11310d
initial commit
Browse files- .gitignore +1 -0
- app.py +82 -0
- components.py +280 -0
- images/energyville_logo.png +0 -0
- images/ku_leuven_logo.png +0 -0
- requirements.txt +2 -0
- utils.py +29 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.streamlit/
|
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from components import buildings_view, models_view, performance_view, computation_view
|
4 |
+
import utils
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Pv Generation Dashboard", layout="wide")
|
7 |
+
|
8 |
+
PAGES = [
|
9 |
+
"Buildings",
|
10 |
+
"Models",
|
11 |
+
"Performance",
|
12 |
+
"Computational Resources",
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
@st.cache_data(ttl=86400)
|
17 |
+
def fetch_data():
|
18 |
+
return utils.get_wandb_data(
|
19 |
+
st.secrets["wandb_entity"],
|
20 |
+
"enfobench-pv-generation",
|
21 |
+
st.secrets["wandb_api_key"],
|
22 |
+
job_type="metrics",
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
data = fetch_data()
|
27 |
+
models = sorted(data["model"].unique().tolist())
|
28 |
+
models_to_plot = set()
|
29 |
+
model_groups: dict[str, list[str]] = {}
|
30 |
+
|
31 |
+
for model in models:
|
32 |
+
group, model_name = model.split(".", maxsplit=1)
|
33 |
+
if group not in model_groups:
|
34 |
+
model_groups[group] = []
|
35 |
+
model_groups[group].append(model_name)
|
36 |
+
|
37 |
+
|
38 |
+
with st.sidebar:
|
39 |
+
left, right = st.columns(
|
40 |
+
2
|
41 |
+
) # Create two columns within the right column for side-by-side images
|
42 |
+
with left:
|
43 |
+
st.image("./images/ku_leuven_logo.png")
|
44 |
+
with right:
|
45 |
+
st.image("./images/energyville_logo.png")
|
46 |
+
|
47 |
+
view = st.selectbox("View", PAGES, index=0)
|
48 |
+
|
49 |
+
st.header("Models to include")
|
50 |
+
left, right = st.columns(2)
|
51 |
+
with left:
|
52 |
+
select_none = st.button("Select None", use_container_width=True)
|
53 |
+
if select_none:
|
54 |
+
for model in models:
|
55 |
+
st.session_state[model] = False
|
56 |
+
with right:
|
57 |
+
select_all = st.button("Select All", use_container_width=True)
|
58 |
+
if select_all:
|
59 |
+
for model in models:
|
60 |
+
st.session_state[model] = True
|
61 |
+
|
62 |
+
for model_group, models in model_groups.items():
|
63 |
+
st.text(model_group)
|
64 |
+
for model_name in models:
|
65 |
+
to_plot = st.checkbox(model_name, value=True, key=f"{model_group}.{model_name}")
|
66 |
+
if to_plot:
|
67 |
+
models_to_plot.add(f"{model_group}.{model_name}")
|
68 |
+
|
69 |
+
|
70 |
+
st.title("EnFoBench - Electricity Demand")
|
71 |
+
st.divider()
|
72 |
+
|
73 |
+
if view == "Buildings":
|
74 |
+
buildings_view(data)
|
75 |
+
elif view == "Models":
|
76 |
+
models_view(data)
|
77 |
+
elif view == "Performance":
|
78 |
+
performance_view(data, models_to_plot)
|
79 |
+
elif view == "Computational Resources":
|
80 |
+
computation_view(data, models_to_plot)
|
81 |
+
else:
|
82 |
+
st.write("Not implemented yet")
|
components.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import plotly.express as px
|
4 |
+
|
5 |
+
|
6 |
+
def buildings_view(data):
|
7 |
+
buildings = (
|
8 |
+
data[
|
9 |
+
[
|
10 |
+
"unique_id",
|
11 |
+
"metadata.location_id",
|
12 |
+
"metadata.timezone",
|
13 |
+
"dataset.available_history.days",
|
14 |
+
"metadata.ac_capacity",
|
15 |
+
]
|
16 |
+
]
|
17 |
+
.groupby("unique_id")
|
18 |
+
.first()
|
19 |
+
.rename(
|
20 |
+
columns={
|
21 |
+
"metadata.location_id": "Location ID",
|
22 |
+
"metadata.timezone": "Timezone",
|
23 |
+
"dataset.available_history.days": "Available history (days)",
|
24 |
+
"metadata.ac_capacity": "Capacity (kW)",
|
25 |
+
}
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
st.metric("Number of buildings", len(buildings))
|
30 |
+
st.divider()
|
31 |
+
|
32 |
+
st.markdown("### Buildings")
|
33 |
+
st.dataframe(
|
34 |
+
buildings,
|
35 |
+
use_container_width=True,
|
36 |
+
column_config={
|
37 |
+
"Available history (days)": st.column_config.ProgressColumn(
|
38 |
+
"Available history (days)",
|
39 |
+
help="Available training data during the first prediction.",
|
40 |
+
format="%f",
|
41 |
+
min_value=0,
|
42 |
+
max_value=float(buildings['Available history (days)'].max()),
|
43 |
+
),
|
44 |
+
"Capacity (kW)": st.column_config.ProgressColumn(
|
45 |
+
"Capacity (kW)",
|
46 |
+
help="Available training data during the first prediction.",
|
47 |
+
format="%f",
|
48 |
+
min_value=0,
|
49 |
+
max_value=float(buildings['Capacity (kW)'].max()),
|
50 |
+
),
|
51 |
+
},
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def models_view(data):
|
56 |
+
models = (
|
57 |
+
data[
|
58 |
+
[
|
59 |
+
"model",
|
60 |
+
"cv_config.folds",
|
61 |
+
"cv_config.horizon",
|
62 |
+
"cv_config.step",
|
63 |
+
"cv_config.time",
|
64 |
+
"model_info.repository",
|
65 |
+
"model_info.tag",
|
66 |
+
"model_info.variate_type",
|
67 |
+
]
|
68 |
+
]
|
69 |
+
.groupby("model")
|
70 |
+
.first()
|
71 |
+
.rename(
|
72 |
+
columns={
|
73 |
+
"cv_config.folds": "CV Folds",
|
74 |
+
"cv_config.horizon": "CV Horizon",
|
75 |
+
"cv_config.step": "CV Step",
|
76 |
+
"cv_config.time": "CV Time",
|
77 |
+
"model_info.repository": "Image Repository",
|
78 |
+
"model_info.tag": "Image Tag",
|
79 |
+
"model_info.variate_type": "Variate type",
|
80 |
+
}
|
81 |
+
)
|
82 |
+
)
|
83 |
+
|
84 |
+
st.metric("Number of models", len(models))
|
85 |
+
st.divider()
|
86 |
+
|
87 |
+
st.markdown("### Models")
|
88 |
+
st.dataframe(models, use_container_width=True)
|
89 |
+
|
90 |
+
left, right = st.columns(2, gap="large")
|
91 |
+
with left:
|
92 |
+
st.markdown("#### Variate types")
|
93 |
+
fig = px.pie(
|
94 |
+
models.groupby("Variate type").size().reset_index(),
|
95 |
+
values=0,
|
96 |
+
names="Variate type",
|
97 |
+
)
|
98 |
+
st.plotly_chart(fig, use_container_width=True)
|
99 |
+
|
100 |
+
with right:
|
101 |
+
st.markdown("#### Frameworks")
|
102 |
+
_df = models.copy()
|
103 |
+
_df["Framework"] = _df.index.str.split(".").str[0]
|
104 |
+
fig = px.pie(
|
105 |
+
_df.groupby("Framework").size().reset_index(),
|
106 |
+
values=0,
|
107 |
+
names="Framework",
|
108 |
+
)
|
109 |
+
st.plotly_chart(fig, use_container_width=True)
|
110 |
+
|
111 |
+
|
112 |
+
def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
113 |
+
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
|
114 |
+
by="model", ascending=True
|
115 |
+
)
|
116 |
+
|
117 |
+
left, right = st.columns(2, gap="small")
|
118 |
+
with left:
|
119 |
+
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
|
120 |
+
with right:
|
121 |
+
aggregation = st.selectbox(
|
122 |
+
"Aggregation", ["min", "mean", "median", "max", "std"], index=1
|
123 |
+
)
|
124 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} per building")
|
125 |
+
fig = px.box(
|
126 |
+
data_to_plot,
|
127 |
+
x=f"{metric}.{aggregation}",
|
128 |
+
y="model",
|
129 |
+
color="model",
|
130 |
+
points="all",
|
131 |
+
)
|
132 |
+
fig.update_layout(showlegend=False, height=40 * len(models_to_plot))
|
133 |
+
st.plotly_chart(fig, use_container_width=True)
|
134 |
+
|
135 |
+
st.divider()
|
136 |
+
|
137 |
+
left, right = st.columns(2, gap="large")
|
138 |
+
with left:
|
139 |
+
x_metric = st.selectbox(
|
140 |
+
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric"
|
141 |
+
)
|
142 |
+
x_aggregation = st.selectbox(
|
143 |
+
"Aggregation",
|
144 |
+
["min", "mean", "median", "max", "std"],
|
145 |
+
index=1,
|
146 |
+
key="x_aggregation",
|
147 |
+
)
|
148 |
+
with right:
|
149 |
+
y_metric = st.selectbox(
|
150 |
+
"Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric"
|
151 |
+
)
|
152 |
+
y_aggregation = st.selectbox(
|
153 |
+
"Aggregation",
|
154 |
+
["min", "mean", "median", "max", "std"],
|
155 |
+
index=1,
|
156 |
+
key="y_aggregation",
|
157 |
+
)
|
158 |
+
|
159 |
+
st.markdown(
|
160 |
+
f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}"
|
161 |
+
)
|
162 |
+
fig = px.scatter(
|
163 |
+
data_to_plot,
|
164 |
+
x=f"{x_metric}.{x_aggregation}",
|
165 |
+
y=f"{y_metric}.{y_aggregation}",
|
166 |
+
color="model",
|
167 |
+
)
|
168 |
+
fig.update_layout(height=600)
|
169 |
+
st.plotly_chart(fig, use_container_width=True)
|
170 |
+
|
171 |
+
st.divider()
|
172 |
+
|
173 |
+
left, right = st.columns(2, gap="small")
|
174 |
+
with left:
|
175 |
+
metric = st.selectbox(
|
176 |
+
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric"
|
177 |
+
)
|
178 |
+
with right:
|
179 |
+
aggregation = st.selectbox(
|
180 |
+
"Aggregation across folds",
|
181 |
+
["min", "mean", "median", "max", "std"],
|
182 |
+
index=1,
|
183 |
+
key="table_aggregation",
|
184 |
+
)
|
185 |
+
|
186 |
+
metrics_table = data_to_plot.groupby(["model"]).agg(aggregation, numeric_only=True)[
|
187 |
+
[
|
188 |
+
f"{metric}.min",
|
189 |
+
f"{metric}.mean",
|
190 |
+
f"{metric}.median",
|
191 |
+
f"{metric}.max",
|
192 |
+
f"{metric}.std",
|
193 |
+
]
|
194 |
+
]
|
195 |
+
|
196 |
+
def custom_table(styler):
|
197 |
+
styler.background_gradient(cmap="seismic", axis=0)
|
198 |
+
styler.format(precision=2)
|
199 |
+
|
200 |
+
# center text and increase font size
|
201 |
+
styler.map(lambda x: "text-align: center; font-size: 14px;")
|
202 |
+
return styler
|
203 |
+
|
204 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
|
205 |
+
styled_table = metrics_table.style.pipe(custom_table)
|
206 |
+
st.dataframe(styled_table, use_container_width=True)
|
207 |
+
|
208 |
+
metrics_table = (
|
209 |
+
data_to_plot.groupby(["model", "unique_id"])
|
210 |
+
.apply(aggregation, numeric_only=True)
|
211 |
+
.reset_index()
|
212 |
+
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
|
213 |
+
)
|
214 |
+
|
215 |
+
def custom_table(styler):
|
216 |
+
styler.background_gradient(cmap="seismic", axis=None)
|
217 |
+
styler.format(precision=2)
|
218 |
+
|
219 |
+
# center text and increase font size
|
220 |
+
styler.map(lambda x: "text-align: center; font-size: 14px;")
|
221 |
+
return styler
|
222 |
+
|
223 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
|
224 |
+
styled_table = metrics_table.style.pipe(custom_table)
|
225 |
+
st.dataframe(styled_table, use_container_width=True)
|
226 |
+
|
227 |
+
|
228 |
+
def computation_view(data, models_to_plot: set[str]):
|
229 |
+
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
|
230 |
+
by="model", ascending=True
|
231 |
+
)
|
232 |
+
|
233 |
+
st.markdown("#### Computational Resources")
|
234 |
+
fig = px.parallel_coordinates(
|
235 |
+
data_to_plot.groupby("model").mean(numeric_only=True).reset_index(),
|
236 |
+
dimensions=[
|
237 |
+
"model",
|
238 |
+
"resource_usage.CPU",
|
239 |
+
"resource_usage.memory",
|
240 |
+
"MAE.mean",
|
241 |
+
"RMSE.mean",
|
242 |
+
"MBE.mean",
|
243 |
+
"rMAE.mean",
|
244 |
+
],
|
245 |
+
color="rMAE.mean",
|
246 |
+
color_continuous_scale=px.colors.diverging.Portland,
|
247 |
+
)
|
248 |
+
st.plotly_chart(fig, use_container_width=True)
|
249 |
+
|
250 |
+
st.divider()
|
251 |
+
|
252 |
+
left, center, right = st.columns(3, gap="small")
|
253 |
+
with left:
|
254 |
+
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
|
255 |
+
with center:
|
256 |
+
aggregation_per_building = st.selectbox(
|
257 |
+
"Aggregation per building", ["min", "mean", "median", "max", "std"], index=1
|
258 |
+
)
|
259 |
+
with right:
|
260 |
+
aggregation_per_model = st.selectbox(
|
261 |
+
"Aggregation per model", ["min", "mean", "median", "max", "std"], index=1
|
262 |
+
)
|
263 |
+
|
264 |
+
st.markdown(
|
265 |
+
f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage"
|
266 |
+
)
|
267 |
+
aggregated_data = (
|
268 |
+
data_to_plot.groupby("model")
|
269 |
+
.agg(aggregation_per_building, numeric_only=True)
|
270 |
+
.reset_index()
|
271 |
+
)
|
272 |
+
fig = px.scatter(
|
273 |
+
aggregated_data,
|
274 |
+
x="resource_usage.CPU",
|
275 |
+
y=f"{metric}.{aggregation_per_model}",
|
276 |
+
color="model",
|
277 |
+
log_x=True,
|
278 |
+
)
|
279 |
+
fig.update_layout(height=600)
|
280 |
+
st.plotly_chart(fig, use_container_width=True)
|
images/energyville_logo.png
ADDED
![]() |
images/ku_leuven_logo.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wandb==0.17.0
|
2 |
+
plotly==5.20.0
|
utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import wandb
|
3 |
+
|
4 |
+
|
5 |
+
def get_wandb_data(entity: str, project: str, api_key: str, job_type: str) -> pd.DataFrame:
|
6 |
+
api = wandb.Api(api_key=api_key)
|
7 |
+
|
8 |
+
# Project is specified by <entity/project-name>
|
9 |
+
filter_dict = {"jobType": job_type}
|
10 |
+
runs = api.runs(f"{entity}/{project}", filters=filter_dict)
|
11 |
+
|
12 |
+
summary_list, config_list, name_list = [], [], []
|
13 |
+
for run in runs:
|
14 |
+
# .summary contains the output keys/values for metrics like accuracy.
|
15 |
+
# We call ._json_dict to omit large files
|
16 |
+
summary_list.append(run.summary._json_dict)
|
17 |
+
|
18 |
+
# .config contains the hyperparameters.
|
19 |
+
# We remove special values that start with _.
|
20 |
+
config_list.append({k: v for k, v in run.config.items()})
|
21 |
+
|
22 |
+
# .name is the human-readable name of the run.
|
23 |
+
name_list.append(run.name)
|
24 |
+
|
25 |
+
summary_df = pd.json_normalize(summary_list, max_level=1)
|
26 |
+
config_df = pd.json_normalize(config_list, max_level=2)
|
27 |
+
runs_df = pd.concat([summary_df, config_df], axis=1)
|
28 |
+
runs_df.index = name_list
|
29 |
+
return runs_df
|