File size: 43,553 Bytes
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
6872779
 
 
2dae4e3
 
 
6872779
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
6872779
2dae4e3
 
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
2dae4e3
6872779
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
6872779
2dae4e3
 
6872779
 
 
 
 
 
 
 
2dae4e3
 
6872779
 
 
 
 
 
2dae4e3
6872779
 
 
2dae4e3
 
 
 
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
2dae4e3
6872779
 
 
2dae4e3
6872779
 
 
2dae4e3
6872779
 
 
2dae4e3
6872779
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
 
2dae4e3
6872779
 
 
 
 
 
 
b26e24a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
import requests
import pandas as pd
from io import StringIO
import streamlit as st
import os
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
import numpy as np
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import acf
from statsmodels.graphics.tsaplots import plot_acf
import matplotlib.pyplot as plt


##GET ALL FILES FROM GITHUB
def load_GitHub(github_token, file_name):
    url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
    headers = {'Authorization': f'token {github_token}'}

    response = requests.get(url, headers=headers)

    if response.status_code == 200:
        csv_content = StringIO(response.text)
        df = pd.read_csv(csv_content)
        if 'Date' in df.columns:
            df['Date'] = pd.to_datetime(df['Date'])  # Convert 'Date' column to datetime
            df.set_index('Date', inplace=True)  # Set 'Date' column as the index
            #df.to_csv(file_name) 
        return df
    else:
        print(f"Failed to download {file_name}. Status code: {response.status_code}")
        return None

def load_forecast(github_token):
    predictions_dict = {}
    for hour in range(24):
        file_name = f'Predictions_{hour}h.csv'
        df = load_GitHub(github_token, file_name)
        if df is not None:
            predictions_dict[file_name] = df
    return predictions_dict

def convert_European_time(data, time_zone):
    data.index = pd.to_datetime(data.index, utc=True)
    data.index = data.index.tz_convert(time_zone)
    data.index = data.index.tz_localize(None)
    return data

def simplify_model_names(df):
    # Define the mapping of complex names to simpler ones
    replacements = {
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
        r'\.Naive\.\dD': '.Naive',
    }
    
    # Apply the replacements
    for original, simplified in replacements.items():
        df.columns = df.columns.str.replace(original, simplified, regex=True)
    
    return df

def simplify_model_names_in_index(df):
    # Define the mapping of complex names to simpler ones
    replacements = {
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
        r'\.Naive\.\dD': '.Naive',
    }

    # Apply the replacements to the DataFrame index
    for original, simplified in replacements.items():
        df.index = df.index.str.replace(original, simplified, regex=True)
    
    return df

github_token = st.secrets["GitHub_Token_KUL_Margarida"]

if github_token:
    forecast_dict = load_forecast(github_token)

    historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')

    Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv')
    Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv')
    Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv')
    Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv')
    
    Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
    Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
    Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
    Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')


else:
    print("Please enter your GitHub Personal Access Token to proceed.")

def conformal_predictions(data, target, my_forecast):
    data['Residuals'] = data[my_forecast] - data[actual_col]
    data['Hour'] = data.index.hour

    min_date = data.index.min()
    for date in data.index.normalize().unique():
        if date >= min_date + pd.DateOffset(days=30):
            start_date = date - pd.DateOffset(days=30)
            end_date = date
            calculation_window = data[start_date:end_date-pd.DateOffset(hours=1)]
            quantiles = calculation_window.groupby('Hour')['Residuals'].quantile(0.8)
            # Use .loc to safely access and modify data
            if date in data.index:
                current_day_data = data.loc[date.strftime('%Y-%m-%d')]
                for hour in current_day_data['Hour'].unique():
                    if hour in quantiles.index:
                        hour_quantile = quantiles[hour]
                        idx = (data.index.normalize() == date) & (data.Hour == hour)
                        data.loc[idx, 'Quantile_80'] = hour_quantile
                        data.loc[idx, 'Lower_Interval'] = data.loc[idx, my_forecast] - hour_quantile
                        data.loc[idx, 'Upper_Interval'] = data.loc[idx, my_forecast] + hour_quantile
    #data.reset_index(inplace=True)
    return data

# Main layout of the app
col1, col2 = st.columns([5, 2])  # Adjust the ratio to better fit your layout needs
with col1:
    st.title("Transparency++")

with col2:
    upper_space = col2.empty()
    upper_space = col2.empty()
    col2_1, col2_2 = st.columns(2)  # Create two columns within the right column for side-by-side images
    with col2_1:
        st.image("KU_Leuven_logo.png", width=100)   # Adjust the path and width as needed
    with col2_2:
        st.image("energyville_logo.png", width=100) 

upper_space.markdown("""
   
   
""", unsafe_allow_html=True)



countries = {
    'Belgium': 'BE',
    'Netherlands': 'NL',
    'Germany': 'DE',
    'France': 'FR',
}


st.sidebar.header('Filters')

st.sidebar.subheader("Select Country")
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")

selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))


st.sidebar.subheader("Select Date Range ")
st.sidebar.caption("Define the time period over which the accuracy metrics will be calculated.")

st.write()
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:", 
                                   value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))

# Ensure the date range provides two dates
if len(date_range) == 2:
    start_date = pd.Timestamp(date_range[0])
    end_date = pd.Timestamp(date_range[1])
else:
    st.error("Please select a valid date range.")
    st.stop()

st.sidebar.subheader("Section")
st.sidebar.caption("Select the type of information you want to explore.")


# Sidebar with radio buttons for different sections
section = st.sidebar.radio('', ['Data', 'Forecasts', 'Insights'],index=1)

country_code = countries[selected_country]
if country_code == 'BE':
    data = Data_BE
    weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
    data['Temperature'] = data['temperature_2m_8']
    data['Wind Speed Offshore'] = data['wind_speed_100m_4']
    data['Wind Speed Onshore'] = data['wind_speed_100m_8']

elif country_code == 'DE':
    data = Data_DE
    weather_columns = ['Temperature', 'Wind Speed']
    data['Temperature'] = data['temperature_2m']
    data['Wind Speed'] = data['wind_speed_100m']

elif country_code == 'NL':
    data = Data_NL
    weather_columns = ['Temperature', 'Wind Speed']
    data['Temperature'] = data['temperature_2m']
    data['Wind Speed'] = data['wind_speed_100m']

elif country_code == 'FR':
    data = Data_FR
    weather_columns = ['Temperature', 'Wind Speed']
    data['Temperature'] = data['temperature_2m']
    data['Wind Speed'] = data['wind_speed_100m']

def add_feature(df2, df_main):
    #df_main.index = pd.to_datetime(df_main.index)
    #df2.index = pd.to_datetime(df2.index)
    df_combined = df_main.combine_first(df2)
    last_date_df1 = df_main.index.max()
    first_date_df2 = df2.index.min()
    if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1):
        df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0)
    #df_combined.reset_index(inplace=True)
    return df_combined
#data.index = data.index.tz_localize('UTC')


forecast_columns = [
    'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']

if section == 'Data':
    st.header("Data")
    st.write("""
    This section allows you to explore and upload your datasets.
    You can visualize raw data, clean it, and prepare it for analysis.
    """)
   
    st.header('Data Quality')
    
    st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
    
    # Report % of missing values
    missing_values = data[forecast_columns].isna().mean() * 100
    missing_values = missing_values.round(2)

    installed_capacities = {
        'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
        'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
        'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},  
        'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},  
    }

    if country_code not in installed_capacities:
        st.error(f"Installed capacities not defined for country code '{country_code}'.")
        st.stop()


    # Report % of extreme, impossible values for the selected country
    capacities = installed_capacities[country_code]
    extreme_values = {}

    for col in forecast_columns:
            if 'Solar_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
            elif 'Solar_forecast_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
            elif 'Wind_onshore_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
            elif 'Wind_onshore_forecast_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
            elif 'Wind_offshore_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
            elif 'Wind_offshore_forecast_entsoe' in col:
                extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
            elif 'Load_entsoe' in col:
                extreme_values[col] = ((data[col] < 0)).mean() * 100
            elif 'Load_forecast_entsoe' in col:
                extreme_values[col] = ((data[col] < 0)).mean() * 100


    extreme_values = pd.Series(extreme_values).round(2)

    # Combine all metrics into one DataFrame
    metrics_df = pd.DataFrame({
    'Missing Values (%)': missing_values,
    'Extreme/Nonsensical Values (%)': extreme_values,
    })

    st.markdown(
    """
    <style>
    .dataframe {font-size: 45px !important;}
    </style>
    """,
    unsafe_allow_html=True
    )

    st.dataframe(metrics_df)

    st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
    st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)

# Section 2: Forecasts
elif section == 'Forecasts':
   
    st.header('Forecast Quality')
    
    # Time series for last 1 week
    st.subheader('Time Series: Last 1 Week')
    last_week = Data_BE.loc[Data_BE.index >= (data.index[-1] - pd.Timedelta(days=7))]
    st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
    forecast_columns_operational = [
    'Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia']
    forecast_columns = [
    'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']

    operation_forecast_load=forecast_dict['Predictions_10h.csv'].filter(like='Load_', axis=1)
    operation_forecast_res=forecast_dict['Predictions_17h.csv'].filter(regex='^(?!Load_)')
    operation_forecast_load.columns = [col.replace('_entsoe.', '_').replace('Naive.7D', 'WeeklyNaiveSeasonal') for col in operation_forecast_load.columns]
    operation_forecast_res.columns = [col.replace('_entsoe.', '_').replace('Naive.1D', 'DailyNaiveSeasonal') for col in operation_forecast_res.columns]
    Historical_and_Load=add_feature(operation_forecast_load, historical_forecast)
    Historical_and_operational=add_feature(operation_forecast_res, Historical_and_Load)
    #print(Historical_and_operational.filter(like='Forecast_elia', axis=1))
    best_forecast = Historical_and_operational.filter(like='Forecast_elia', axis=1)
    df_combined = Historical_and_operational.join(Data_BE, how='inner')
    last_week_best_forecast = best_forecast.loc[best_forecast.index >= (best_forecast.index[-24] - pd.Timedelta(days=8))]
    

    for i in range(0, len(forecast_columns_operational), 3):
        actual_col = forecast_columns_operational[i]
        forecast_col = forecast_columns_operational[i + 1]
        my_forecast = forecast_columns_operational[i + 2]


        if forecast_col in data.columns:
            fig = go.Figure()
            fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
            fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))

            if country_code=='BE':
                conformal=conformal_predictions(df_combined, actual_col, my_forecast)
                last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=8))]
                if actual_col =='Load_entsoe':
                    last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))]
                fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS'))

                fig.add_trace(go.Scatter(
                    x=last_week_conformal.index,
                    y=last_week_conformal['Lower_Interval'],
                    mode='lines',
                    line=dict(width=0),
                    showlegend=False
                ))

                # Add the upper interval trace and fill to the lower interval
                fig.add_trace(go.Scatter(
                    x=last_week_conformal.index,
                    y=last_week_conformal['Upper_Interval'],
                    mode='lines',
                    line=dict(width=0),
                    fill='tonexty',  # Fill between this trace and the previous one
                    fillcolor='rgba(68, 68, 68, 0.3)',
                    name='P10/P90 prediction intervals'
                ))


            fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]')
        
            st.plotly_chart(fig)


    def plot_category(df_dict, category_prefix, title):
        fig = go.Figure()

        # Define base colors for each model
        model_colors = {
            'LightGBMModel.TimeCov.Temp.Forecast_elia': '#1f77b4',  # Blue
            'LightGBMModel.TimeCov.Temp': '#2ca02c',  # Green
            'Naive': '#ff7f0e'  # Orange
        }

        # To keep track of which model has been added to the legend
        legend_added = {'LightGBMModel.TimeCov.Temp.Forecast_elia': False, 'LightGBMModel.TimeCov.Temp': False, 'Naive': False}

        for file_name, df in df_dict.items():
            # Extract the hour from the filename, assuming the format is "Predictions_Xh.csv"
            hour = int(file_name.split('_')[1].replace('h.csv', ''))
            
            filtered_columns = [col for col in df.columns if col.startswith(category_prefix)]
            for column in filtered_columns:
                # Identify the model type with more precise logic
                if 'LightGBMModel' in column:
                    if 'Forecast_elia' in column:
                        model_key = 'LightGBMModel.TimeCov.Temp.Forecast_elia'
                    elif 'TimeCov' in column:
                        model_key = 'LightGBMModel.TimeCov.Temp'
                elif 'Naive' in column:
                    model_key = 'Naive'
                else:
                    continue  # Skip if it doesn't match any model type

                # Extract the relevant part of the model name
                parts = column.split('.')
                model_name_parts = parts[1:]  # Skip the variable prefix
                model_name = '.'.join(model_name_parts)  # Rejoin the parts to form the model name

                # Get the base color for the model
                base_color = model_colors[model_key]

                # Calculate the color shade based on the hour
                color_scale = pc.hex_to_rgb(base_color)
                scale_factor = 0.3 + (hour / 40)  # Adjust scale to ensure the gradient is visible
                adjusted_color = tuple(int(c * scale_factor) for c in color_scale)
                # Convert to RGBA with transparency for plot lines
                line_color = f'rgba({adjusted_color[0]}, {adjusted_color[1]}, {adjusted_color[2]}, 0.1)'  # Transparent color for lines

                # Combine the hour and the model name for the legend, but only add the legend entry once
                show_legend = not legend_added[model_key]

                fig.add_trace(go.Scatter(
                    x=df.index,  # Assuming 'Date' is the index, use 'df.index' for x-axis
                    y=df[column],
                    mode='lines',
                    name=model_name if show_legend else None,  # Use the model name for the legend, but only once
                    line=dict(color=base_color if show_legend else line_color),  # Use opaque color for legend, transparent for lines
                    showlegend=show_legend,  # Show legend only once per model
                    legendgroup=model_key  # Grouping for consistent legend color
                ))

                # Mark that this model has been added to the legend
                if show_legend:
                    legend_added[model_key] = True
                
            # Add real values as a separate trace, if provided
            filtered_Data_BE_df = Data_BE.loc[df.index]

        if filtered_Data_BE_df[f'{category_prefix}_entsoe'].notna().any():
            fig.add_trace(go.Scatter(
                x=filtered_Data_BE_df.index,
                y=filtered_Data_BE_df[f'{category_prefix}_entsoe'],
                mode='lines',
                name=f'Actual {category_prefix}',
                line=dict(color='black', width=2),  # Black line for real values
                showlegend=True  # Always show this in the legend
            ))

        # Update layout to position the legend at the top, side by side
        fig.update_layout(
            title=dict(
                text=title,
                x=0,  # Center the title horizontally
                y=1.00,  # Slightly lower the title to create more space
                xanchor='left',
                yanchor='top'
            ),
            xaxis_title='Date',
            yaxis_title='Value',
            legend=dict(
                orientation="h",  # Horizontal legend
                yanchor="bottom",  # Align to the bottom of the legend box
                y=1,  # Increase y position to avoid overlap with the title
                xanchor="center",  # Center the legend horizontally
                x=0.5  # Position at the center of the plot
            )
        )
        return fig
    

    def calculate_mae(y_true, y_pred):
        return np.mean(np.abs(y_true - y_pred))
    def plot_mae_comparison(df_dict, category_prefix, title, real_values_df):
        hours = list(range(24))
        if category_prefix=='Load':
            model_colors = {
                'LightGBMModel.7D.TimeCov.Temp.Forecast_elia': '#1F77B4',  # Blue
                'LightGBMModel.7D.TimeCov.Temp': '#2CA02C',  # Green
                'Naive': '#FF7F0E'  # Orange
            }
        else:
            model_colors = {
                'LightGBMModel.1D.TimeCov.Temp.Forecast_elia': '#1F77B4',  # Blue
                'LightGBMModel.1D.TimeCov.Temp': '#2CA02C',  # Green
                'Naive': '#FF7F0E'  # Orange
            }
        fig = go.Figure()
        for model_key, base_color in model_colors.items():
            hours_with_data = []
            mae_ratios = []
            for hour in hours:
                file_name = f'Predictions_{hour}h.csv'
                df = df_dict.get(file_name, None)
                if df is None:
                    continue
                if isinstance(df.index, pd.DatetimeIndex):
                    first_day = df.index.min().normalize()
                    last_day = df.index.max().normalize()
                    df = df[df.index.normalize() != first_day]
                    df = df[df.index.normalize() != last_day]
                # Adjusted filtering logic based on actual column names
                filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
                if not filtered_columns:
                    continue
                # Assuming only one column matches, otherwise refine the selection logic
                model_predictions = df[filtered_columns[0]]
                actual_values = real_values_df[f'{category_prefix}_entsoe']
                actual_values = actual_values.dropna()
                # Align both series by their common indices
                common_indices = model_predictions.index.intersection(actual_values.index)
                aligned_model_predictions = model_predictions.loc[common_indices]
                aligned_actual_values = actual_values.loc[common_indices]
                # Calculate MAE for the model
                model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
                # Calculate MAE for the entsoe forecast
                entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
                #print(entsoe_forecast.index)
                entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
                # Calculate MAE ratio
                mae_ratio = model_mae / entsoe_mae
                mae_ratios.append(mae_ratio)
                hours_with_data.append(hour)
            # Plot the MAE ratio for this model as points
            if mae_ratios:  # Only plot if there's data
                fig.add_trace(go.Scatter(
                    x=hours_with_data,  # The hours where we have data
                    y=mae_ratios,
                    mode='markers+lines',  # Plot as points connected by lines
                    name=model_key,
                    line=dict(color=base_color),
                    marker=dict(color=base_color, size=8)  # Customize marker size
                ))
        # Update layout
        fig.update_layout(
            title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by hour of Forecasting.',
            xaxis_title='Hour of Forecast',
            yaxis_title='MAE Ratio (Model / entsoe)',
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="center",
                x=0.5
            )
        )
        return fig
    
 

    def plot_mae_comparison_clock(df_dict, category_prefix, title, real_values_df):
        hours = list(range(24))
        if category_prefix=='Load':
            model_colors = {
                'LightGBM_with_Forecast_elia': '#1F77B4',  # Blue
                'LightGBM': '#2CA02C',  # Green
                'Naive': '#FF7F0E'  # Orange
            }
        else:
            model_colors = {
                'LightGBM_with_Forecast_elia': '#1F77B4',  # Blue
                'LightGBM': '#2CA02C',  # Green
                'Naive': '#FF7F0E'  # Orange
            }

        fig = go.Figure()

        for model_key, base_color in model_colors.items():
            hours_with_data = []
            mae_ratios = []

            #print(f"Processing {model_key}...")  # Debugging print

            for hour in hours:
                file_name = f'Predictions_{hour}h.csv'
                df = df_dict.get(file_name, None)
                if df is None:
                    #print(f"No data for hour {hour}. Skipping...")
                    continue

                if isinstance(df.index, pd.DatetimeIndex):
                    first_day = df.index.min().normalize()
                    last_day = df.index.max().normalize()
                    df = df[df.index.normalize() != first_day]
                    df = df[df.index.normalize() != last_day]

                filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
                if not filtered_columns:
                    print(f"No matching columns for {model_key} at hour {hour}. Skipping...")
                    continue

                model_predictions = df[filtered_columns[0]]
                actual_values = real_values_df[f'{category_prefix}_entsoe']
                actual_values = actual_values.dropna()

                common_indices = model_predictions.index.intersection(actual_values.index)
                aligned_model_predictions = model_predictions.loc[common_indices]
                aligned_actual_values = actual_values.loc[common_indices]

                model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
                entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
                entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)

                mae_ratio = model_mae / entsoe_mae
                mae_ratios.append(mae_ratio)
                hours_with_data.append(hour)

            if mae_ratios:
                print(f"Adding {model_key} to the plot with {len(mae_ratios)} points.")  # Debugging print
                fig.add_trace(go.Scatterpolar(
                    r=mae_ratios + [mae_ratios[0]],  # Ensure closure of the polar plot
                    theta=[h * 15 for h in hours_with_data] + [0],  # Ensure closure at 0 degrees
                    mode='lines+markers',
                    name=model_key,
                    line=dict(color=base_color),
                    marker=dict(color=base_color, size=8)
                ))
            else:
                print(f"No data to plot for {model_key}.")  # Debugging print

        fig.update_layout(
            polar=dict(
                radialaxis=dict(visible=True, range=[0, max(max(mae_ratios), 1.0) * 1.1] if mae_ratios else [0, 1.0]),
                angularaxis=dict(tickmode='array', tickvals=[h * 15 for h in hours], ticktext=hours)
            ),
            title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by Hour of Forecasting',
            showlegend=True
        )

        return fig




    if country_code == "BE":
        #-------------------------------------------------
        #st.header('EDS Forecasts by Hour')

        #solar_fig = plot_category(forecast_dict, 'Solar', 'Solar Predictions')
        #st.plotly_chart(solar_fig)

        #wind_offshore_fig = plot_category(forecast_dict, 'Wind_offshore', 'Wind Offshore Predictions')
        #st.plotly_chart(wind_offshore_fig)

        #wind_onshore_fig = plot_category(forecast_dict, 'Wind_onshore', 'Wind Onshore Predictions')
        #st.plotly_chart(wind_onshore_fig)

        #load_fig = plot_category(forecast_dict, 'Load', 'Load Predictions')
        #st.plotly_chart(load_fig)

        #-------------------------------------------------
        #st.header('MAE Ratio Comparison by Forecast Hour')
        #st.write("This graph shows the relative Mean Absolute Error (rMAE) of different forecasting models "
                #"compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
                #"The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
        #mae_comparison_fig = plot_mae_comparison(forecast_dict, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
        #st.plotly_chart(mae_comparison_fig)
        # Similarly for Wind_onshore, Wind_offshore, and Load
        #mae_comparison_fig_wind_onshore = plot_mae_comparison(forecast_dict, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
        #st.plotly_chart(mae_comparison_fig_wind_onshore)
        #mae_comparison_fig_wind_offshore = plot_mae_comparison(forecast_dict, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
        #st.plotly_chart(mae_comparison_fig_wind_offshore)
        #mae_comparison_fig_load = plot_mae_comparison(forecast_dict, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
        #st.plotly_chart(mae_comparison_fig_load)
        #-------------------------------------------------

        st.header('MAE Ratio Comparison by Forecast Hour')
        st.write("These clock-plots shows the relative Mean Absolute Error (rMAE) of different forecasting models compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
                "The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
        
        forecast_dict2 = forecast_dict.copy()
        forecast_dict2 = {k: simplify_model_names(v) for k, v in forecast_dict.items()}

        
        mae_comparison_fig = plot_mae_comparison_clock(forecast_dict2, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
        st.plotly_chart(mae_comparison_fig)
        
        mae_comparison_fig_wind_onshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
        st.plotly_chart(mae_comparison_fig_wind_onshore)
        
        mae_comparison_fig_wind_offshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
        st.plotly_chart(mae_comparison_fig_wind_offshore)
        
        mae_comparison_fig_load = plot_mae_comparison_clock(forecast_dict2, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
        st.plotly_chart(mae_comparison_fig_load)


    

    # Scatter plots for error distribution
    st.subheader('Error Distribution')
    st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
    for i in range(0, len(forecast_columns), 2):
        actual_col = forecast_columns[i]
        forecast_col = forecast_columns[i + 1]
        if forecast_col in data.columns:
            obs = data[actual_col]
            pred = data[forecast_col]
            error = pred - obs

            fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
            fig.update_layout(title=f'Error Distribution for {forecast_col}')
            st.plotly_chart(fig)

    
        
    st.subheader('Accuracy Metrics (Sorted by rMAE):')

    output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
    st.write(output_text)
    

    if country_code == "BE":

        # Combine the two DataFrames on their index
        df_combined = Historical_and_operational.join(Data_BE, how='inner')
        # List of model columns from historical_forecast
        model_columns = historical_forecast.columns

        # Initialize dictionaries to store MAE and RMSE results for each variable
        results_wind_onshore = {}
        results_wind_offshore = {}
        results_load = {}
        results_solar = {}

        # Mapping of variables to their corresponding naive models
        naive_models = {
            'Wind_onshore': 'Wind_onshore_DailyNaiveSeasonal',
            'Wind_offshore': 'Wind_offshore_DailyNaiveSeasonal',
            'Load': 'Load_WeeklyNaiveSeasonal',
            'Solar': 'Solar_DailyNaiveSeasonal'
        }

        # Step 1: Calculate MAE, RMSE, and rMAE for each model
        for col in model_columns:
            # Extract the variable name by taking everything before the first underscore
            base_variable = col.split('_')[0]

            # Handle cases where variable names might be combined with multiple parts (e.g., "Load_LightGBMModel...")
            if base_variable in ['Wind', 'Load', 'Solar']:
                if 'onshore' in col:
                    variable_name = 'Wind_onshore'
                    results_dict = results_wind_onshore
                elif 'offshore' in col:
                    variable_name = 'Wind_offshore'
                    results_dict = results_wind_offshore
                else:
                    variable_name = base_variable
                    results_dict = results_load if base_variable == 'Load' else results_solar
            else:
                variable_name = base_variable

            # Construct the corresponding `variable_entsoe` column name
            entsoe_column = f'{variable_name}_entsoe'
            naive_model_col = naive_models.get(variable_name, None)

            # Drop NaNs for the specific pair of columns before calculating MAE and RMSE
            if entsoe_column in df_combined.columns and naive_model_col in df_combined.columns:
                valid_data = df_combined[[col, entsoe_column]].dropna()
                valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()

                # Calculate MAE and RMSE for the model against the `variable_entsoe`
                mae = np.mean(abs(valid_data[col] - valid_data[entsoe_column]))
                rmse = np.sqrt(mean_squared_error(valid_data[col], valid_data[entsoe_column]))

                # Calculate MAE for the Naive model
                mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))

                # Calculate rMAE for the model
                rMAE = mae / mae_naive if mae_naive != 0 else np.inf

                # Store the results in the corresponding dictionary
                results_dict[f'{col}'] = {'MAE': mae, 'RMSE': rmse, 'rMAE': rMAE}

        # Step 2: Calculate MAE, RMSE, and rMAE for ENTSO-E forecasts specifically
        for variable_name in naive_models.keys():
            entsoe_column = f'{variable_name}_entsoe'
            forecast_entsoe_column = f'{variable_name}_forecast_entsoe'
            naive_model_col = naive_models[variable_name]

            # Ensure that the ENTSO-E forecast is included in the results
            if forecast_entsoe_column in df_combined.columns:
                valid_data = df_combined[[forecast_entsoe_column, entsoe_column]].dropna()
                valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()

                # Calculate MAE and RMSE for the ENTSO-E forecast against the actuals
                mae_entsoe = np.mean(abs(valid_data[forecast_entsoe_column] - valid_data[entsoe_column]))
                rmse_entsoe = np.sqrt(mean_squared_error(valid_data[forecast_entsoe_column], valid_data[entsoe_column]))

                # Calculate rMAE for the ENTSO-E forecast
                mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))
                rMAE_entsoe = mae_entsoe / mae_naive if mae_naive != 0 else np.inf

                # Add the ENTSO-E results to the corresponding dictionary
                if variable_name == 'Wind_onshore':
                    results_wind_onshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
                elif variable_name == 'Wind_offshore':
                    results_wind_offshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
                elif variable_name == 'Load':
                    results_load[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
                elif variable_name == 'Solar':
                    results_solar[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}

        # Convert the dictionaries to DataFrames and sort by rMAE
        df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
        print(df_wind_onshore)
        df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
        df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
        df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')


        st.write("##### Wind Onshore:")
        df_wind_onshore = simplify_model_names_in_index(df_wind_onshore)
        st.dataframe(df_wind_onshore)

        st.write("##### Wind Offshore:")
        df_wind_offshore2 = simplify_model_names_in_index(df_wind_offshore)
        st.dataframe(df_wind_offshore)

        st.write("##### Load:")
        df_load = simplify_model_names_in_index(df_load)
        st.dataframe(df_load)

        st.write("##### Solar:")
        df_solar = simplify_model_names_in_index(df_solar)
        st.dataframe(df_solar)



    else:
        data = data.loc[start_date:end_date]
        accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])

        for i in range(0, len(forecast_columns), 2):
            actual_col = forecast_columns[i]
            forecast_col = forecast_columns[i + 1]
            if forecast_col in data.columns:
                obs = data[actual_col]
                pred = data[forecast_col]
                error = pred - obs
                
                mae = round(np.mean(np.abs(error)),2)
                if 'Load' in actual_col:
                    persistence = obs.shift(168)  # Weekly persistence
                else:
                    persistence = obs.shift(24)  # Daily persistence
                
                # Using the whole year's data for rMAE calculations
                rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
                
                row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
                accuracy_metrics.loc[row_label] = [mae, rmae]

        accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
        accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
        accuracy_metrics = accuracy_metrics.round(4)

        col1, col2 = st.columns([3, 2])

        with col1:
            st.dataframe(accuracy_metrics)

        with col2:
            st.markdown("""
                <style>
                .big-font {
                    font-size: 20px;
                    font-weight: 500;
                }
                </style>
                <div class="big-font">
                Equations
                </div>
                """, unsafe_allow_html=True)

            st.markdown(r"""
            $\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
            
                        
            $\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$
                        

            """)

    

    st.subheader('ACF plots of Errors')
    st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')

    for i in range(0, len(forecast_columns), 2):
        actual_col = forecast_columns[i]
        forecast_col = forecast_columns[i + 1]
        if forecast_col in data.columns:
            obs = data[actual_col]
            pred = data[forecast_col]
            error = pred - obs

            st.write(f"**ACF of Errors for {actual_col}**")
            fig, ax = plt.subplots(figsize=(10, 5))
            plot_acf(error.dropna(), ax=ax)
            st.pyplot(fig)

            acf_values = acf(error.dropna(), nlags=240)
        
# Section 3: Insights
elif section == 'Insights':
    st.header("Insights")
    st.write("""
    This section provides insights derived from the data and forecasts.
    You can visualize trends, anomalies, and other important findings.
    """)

    # Scatter plots for correlation between wind, solar, and load
    st.subheader('Correlation between Wind, Solar, and Load')
    st.write('The below scatter plots are made for checking whether there exists a correlation between all three data fields obtained from ENTSO-E: Solar, Wind and Load.')

    combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]

    for x_col, y_col in combinations:
        if x_col in data.columns and y_col in data.columns:
            # For solar combinations, filter out zero values
            if 'Solar_entsoe' in x_col:
                filtered_data = data[data['Solar_entsoe'] > 0]
                x_values = filtered_data[x_col]
                y_values = filtered_data[y_col]
            else:
                x_values = data[x_col]
                y_values = data[y_col]

            corr_coef = x_values.corr(y_values)
            fig = px.scatter(
                x=x_values,
                y=y_values,
                labels={'x': f'{x_col} [MW]', 'y': f'{y_col} [MW]'},
                title=f'{x_col} vs {y_col} (Correlation: {corr_coef:.2f})', color_discrete_sequence=['grey'])
            st.plotly_chart(fig)


    st.subheader('Weather vs. Generation/Demand')
    st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and the generation/demand data from ENTSO-E.')

    for weather_col in weather_columns:
        for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
            if weather_col in data.columns and actual_col in data.columns:
                clean_label = actual_col.replace('_entsoe', '')

                if weather_col == 'Temperature':
                    fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
                else:
                    fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (km/h)', 'y': clean_label})
                fig.update_layout(title=f'{weather_col} vs {actual_col}')
                st.plotly_chart(fig)