mmmapms's picture
Update app.py
e09fb20 verified
raw
history blame
30.2 kB
import requests
import pandas as pd
from io import StringIO
import streamlit as st
import os
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
import numpy as np
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import acf
from statsmodels.graphics.tsaplots import plot_acf
import matplotlib.pyplot as plt
from datetime import datetime
def get_current_time():
now = datetime.now()
current_hour = now.hour
current_minute = now.minute
# Return the hour and a boolean indicating if it is after the 10th minute
return current_hour, current_minute >= 10
##GET ALL FILES FROM GITHUB
@st.cache_data(show_spinner=False)
def load_GitHub(github_token, file_name, hour, after_10_min):
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
headers = {'Authorization': f'token {github_token}'}
response = requests.get(url, headers=headers)
if response.status_code == 200:
csv_content = StringIO(response.text)
df = pd.read_csv(csv_content)
if 'Date' in df.columns:
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime
df.set_index('Date', inplace=True) # Set 'Date' column as the index
#df.to_csv(file_name)
return df
else:
print(f"Failed to download {file_name}. Status code: {response.status_code}")
return None
@st.cache_data(show_spinner=False)
def load_forecast(github_token, hour, after_10_min):
predictions_dict = {}
for hour in range(24):
file_name = f'Predictions_{hour}h.csv'
df = load_GitHub(github_token, file_name, hour, after_10_min)
if df is not None:
predictions_dict[file_name] = df
return predictions_dict
def convert_European_time(data, time_zone):
data.index = pd.to_datetime(data.index, utc=True)
data.index = data.index.tz_convert(time_zone)
data.index = data.index.tz_localize(None)
return data
def simplify_model_names(df):
# Define the mapping of complex names to simpler ones
replacements = {
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
r'\.Naive\.\dD': '.Naive',
}
# Apply the replacements
for original, simplified in replacements.items():
df.columns = df.columns.str.replace(original, simplified, regex=True)
return df
def simplify_model_names_in_index(df):
# Define the mapping of complex names to simpler ones
replacements = {
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
r'\.Naive\.\dD': '.Naive',
}
# Apply the replacements to the DataFrame index
for original, simplified in replacements.items():
df.index = df.index.str.replace(original, simplified, regex=True)
return df
github_token = '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'
if github_token:
forecast_dict = load_forecast(github_token, hour, after_10_min)
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv')
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv')
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv')
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv')
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')
else:
print("Please enter your GitHub Personal Access Token to proceed.")
# Main layout of the app
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs
with col1:
st.title("Transparency++")
with col2:
upper_space = col2.empty()
upper_space = col2.empty()
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images
with col2_1:
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed
with col2_2:
st.image("energyville_logo.png", width=100)
upper_space.markdown("""
 
 
""", unsafe_allow_html=True)
countries = {
'Netherlands': 'NL',
'Germany': 'DE',
'France': 'FR',
'Belgium': 'BE',
}
st.sidebar.header('Filters')
st.sidebar.subheader("Select Country")
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
st.sidebar.subheader("Select Date Range ")
st.sidebar.caption("Define the time period over which the accuracy metrics will be calculated.")
st.write()
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
# Ensure the date range provides two dates
if len(date_range) == 2:
start_date = pd.Timestamp(date_range[0])
end_date = pd.Timestamp(date_range[1])
else:
st.error("Please select a valid date range.")
st.stop()
st.sidebar.subheader("Section")
st.sidebar.caption("Select the type of information you want to explore.")
# Sidebar with radio buttons for different sections
section = st.sidebar.radio('', ['Data', 'Forecasts', 'Insights'],index=1)
country_code = countries[selected_country]
if country_code == 'BE':
data = Data_BE
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
data['Temperature'] = data['temperature_2m_8']
data['Wind Speed Offshore'] = data['wind_speed_100m_4']
data['Wind Speed Onshore'] = data['wind_speed_100m_8']
elif country_code == 'DE':
data = Data_DE
weather_columns = ['Temperature', 'Wind Speed']
data['Temperature'] = data['temperature_2m']
data['Wind Speed'] = data['wind_speed_100m']
elif country_code == 'NL':
data = Data_NL
weather_columns = ['Temperature', 'Wind Speed']
data['Temperature'] = data['temperature_2m']
data['Wind Speed'] = data['wind_speed_100m']
elif country_code == 'FR':
data = Data_FR
weather_columns = ['Temperature', 'Wind Speed']
data['Temperature'] = data['temperature_2m']
data['Wind Speed'] = data['wind_speed_100m']
def add_feature(df2, df_main):
#df_main.index = pd.to_datetime(df_main.index)
#df2.index = pd.to_datetime(df2.index)
df_combined = df_main.combine_first(df2)
last_date_df1 = df_main.index.max()
first_date_df2 = df2.index.min()
if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1):
df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0)
#df_combined.reset_index(inplace=True)
return df_combined
#data.index = data.index.tz_localize('UTC')
forecast_columns = [
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
if section == 'Data':
st.header("Data")
st.write("""
This section allows you to explore and upload your datasets.
You can visualize raw data, clean it, and prepare it for analysis.
""")
st.header('Data Quality')
st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
data_quality=data.iloc[:-28]
# Report % of missing values
missing_values = data_quality[forecast_columns].isna().mean() * 100
missing_values = missing_values.round(2)
installed_capacities = {
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},
}
if country_code not in installed_capacities:
st.error(f"Installed capacities not defined for country code '{country_code}'.")
st.stop()
# Report % of extreme, impossible values for the selected country
capacities = installed_capacities[country_code]
extreme_values = {}
for col in forecast_columns:
if 'Solar_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
elif 'Solar_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
elif 'Wind_onshore_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
elif 'Wind_onshore_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
elif 'Wind_offshore_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
elif 'Wind_offshore_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
elif 'Load_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
elif 'Load_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
extreme_values = pd.Series(extreme_values).round(2)
# Combine all metrics into one DataFrame
metrics_df = pd.DataFrame({
'Missing Values (%)': missing_values,
'Extreme/Nonsensical Values (%)': extreme_values,
})
st.markdown(
"""
<style>
.dataframe {font-size: 45px !important;}
</style>
""",
unsafe_allow_html=True
)
st.dataframe(metrics_df)
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)
# Section 2: Forecasts
elif section == 'Forecasts':
st.header('Forecast Quality')
# Time series for last 1 week
st.subheader('Time Series: Last 1 Week')
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
forecast_columns = [
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
num_per_var=2
forecast_columns_line=forecast_columns
for i in range(0, len(forecast_columns_line), num_per_var):
actual_col = forecast_columns_line[i]
forecast_col = forecast_columns_line[i + 1]
if forecast_col in data.columns:
fig = go.Figure()
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]')
st.plotly_chart(fig)
def plot_category(df_dict, category_prefix, title):
fig = go.Figure()
# Define base colors for each model
model_colors = {
'LightGBMModel.TimeCov.Temp.Forecast_elia': '#1f77b4', # Blue
'LightGBMModel.TimeCov.Temp': '#2ca02c', # Green
'Naive': '#ff7f0e' # Orange
}
# To keep track of which model has been added to the legend
legend_added = {'LightGBMModel.TimeCov.Temp.Forecast_elia': False, 'LightGBMModel.TimeCov.Temp': False, 'Naive': False}
for file_name, df in df_dict.items():
# Extract the hour from the filename, assuming the format is "Predictions_Xh.csv"
hour = int(file_name.split('_')[1].replace('h.csv', ''))
filtered_columns = [col for col in df.columns if col.startswith(category_prefix)]
for column in filtered_columns:
# Identify the model type with more precise logic
if 'LightGBMModel' in column:
if 'Forecast_elia' in column:
model_key = 'LightGBMModel.TimeCov.Temp.Forecast_elia'
elif 'TimeCov' in column:
model_key = 'LightGBMModel.TimeCov.Temp'
elif 'Naive' in column:
model_key = 'Naive'
else:
continue # Skip if it doesn't match any model type
# Extract the relevant part of the model name
parts = column.split('.')
model_name_parts = parts[1:] # Skip the variable prefix
model_name = '.'.join(model_name_parts) # Rejoin the parts to form the model name
# Get the base color for the model
base_color = model_colors[model_key]
# Calculate the color shade based on the hour
color_scale = pc.hex_to_rgb(base_color)
scale_factor = 0.3 + (hour / 40) # Adjust scale to ensure the gradient is visible
adjusted_color = tuple(int(c * scale_factor) for c in color_scale)
# Convert to RGBA with transparency for plot lines
line_color = f'rgba({adjusted_color[0]}, {adjusted_color[1]}, {adjusted_color[2]}, 0.1)' # Transparent color for lines
# Combine the hour and the model name for the legend, but only add the legend entry once
show_legend = not legend_added[model_key]
fig.add_trace(go.Scatter(
x=df.index, # Assuming 'Date' is the index, use 'df.index' for x-axis
y=df[column],
mode='lines',
name=model_name if show_legend else None, # Use the model name for the legend, but only once
line=dict(color=base_color if show_legend else line_color), # Use opaque color for legend, transparent for lines
showlegend=show_legend, # Show legend only once per model
legendgroup=model_key # Grouping for consistent legend color
))
# Mark that this model has been added to the legend
if show_legend:
legend_added[model_key] = True
# Add real values as a separate trace, if provided
filtered_Data_BE_df = Data_BE.loc[df.index]
if filtered_Data_BE_df[f'{category_prefix}_entsoe'].notna().any():
fig.add_trace(go.Scatter(
x=filtered_Data_BE_df.index,
y=filtered_Data_BE_df[f'{category_prefix}_entsoe'],
mode='lines',
name=f'Actual {category_prefix}',
line=dict(color='black', width=2), # Black line for real values
showlegend=True # Always show this in the legend
))
# Update layout to position the legend at the top, side by side
fig.update_layout(
title=dict(
text=title,
x=0, # Center the title horizontally
y=1.00, # Slightly lower the title to create more space
xanchor='left',
yanchor='top'
),
xaxis_title='Date',
yaxis_title='Value',
legend=dict(
orientation="h", # Horizontal legend
yanchor="bottom", # Align to the bottom of the legend box
y=1, # Increase y position to avoid overlap with the title
xanchor="center", # Center the legend horizontally
x=0.5 # Position at the center of the plot
)
)
return fig
def calculate_mae(y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))
def plot_mae_comparison(df_dict, category_prefix, title, real_values_df):
hours = list(range(24))
if category_prefix=='Load':
model_colors = {
'LightGBMModel.7D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
'LightGBMModel.7D.TimeCov.Temp': '#2CA02C', # Green
'Naive': '#FF7F0E' # Orange
}
else:
model_colors = {
'LightGBMModel.1D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
'LightGBMModel.1D.TimeCov.Temp': '#2CA02C', # Green
'Naive': '#FF7F0E' # Orange
}
fig = go.Figure()
for model_key, base_color in model_colors.items():
hours_with_data = []
mae_ratios = []
for hour in hours:
file_name = f'Predictions_{hour}h.csv'
df = df_dict.get(file_name, None)
if df is None:
continue
if isinstance(df.index, pd.DatetimeIndex):
first_day = df.index.min().normalize()
last_day = df.index.max().normalize()
df = df[df.index.normalize() != first_day]
df = df[df.index.normalize() != last_day]
# Adjusted filtering logic based on actual column names
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
if not filtered_columns:
continue
# Assuming only one column matches, otherwise refine the selection logic
model_predictions = df[filtered_columns[0]]
actual_values = real_values_df[f'{category_prefix}_entsoe']
actual_values = actual_values.dropna()
# Align both series by their common indices
common_indices = model_predictions.index.intersection(actual_values.index)
aligned_model_predictions = model_predictions.loc[common_indices]
aligned_actual_values = actual_values.loc[common_indices]
# Calculate MAE for the model
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
# Calculate MAE for the entsoe forecast
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
# Calculate MAE ratio
mae_ratio = model_mae / entsoe_mae
mae_ratios.append(mae_ratio)
hours_with_data.append(hour)
# Plot the MAE ratio for this model as points
if mae_ratios: # Only plot if there's data
fig.add_trace(go.Scatter(
x=hours_with_data, # The hours where we have data
y=mae_ratios,
mode='markers+lines', # Plot as points connected by lines
name=model_key,
line=dict(color=base_color),
marker=dict(color=base_color, size=8) # Customize marker size
))
# Update layout
fig.update_layout(
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by hour of Forecasting.',
xaxis_title='Hour of Forecast',
yaxis_title='MAE Ratio (Model / entsoe)',
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="center",
x=0.5
)
)
return fig
def plot_mae_comparison_clock(df_dict, category_prefix, title, real_values_df):
hours = list(range(24))
if category_prefix=='Load':
model_colors = {
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
'LightGBM': '#2CA02C', # Green
'Naive': '#FF7F0E' # Orange
}
else:
model_colors = {
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
'LightGBM': '#2CA02C', # Green
'Naive': '#FF7F0E' # Orange
}
fig = go.Figure()
for model_key, base_color in model_colors.items():
hours_with_data = []
mae_ratios = []
for hour in hours:
file_name = f'Predictions_{hour}h.csv'
df = df_dict.get(file_name, None)
if df is None:
continue
if isinstance(df.index, pd.DatetimeIndex):
first_day = df.index.min().normalize()
last_day = df.index.max().normalize()
df = df[df.index.normalize() != first_day]
df = df[df.index.normalize() != last_day]
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
if not filtered_columns:
print(f"No matching columns for {model_key} at hour {hour}. Skipping...")
continue
model_predictions = df[filtered_columns[0]]
actual_values = real_values_df[f'{category_prefix}_entsoe']
actual_values = actual_values.dropna()
common_indices = model_predictions.index.intersection(actual_values.index)
aligned_model_predictions = model_predictions.loc[common_indices]
aligned_actual_values = actual_values.loc[common_indices]
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
mae_ratio = model_mae / entsoe_mae
mae_ratios.append(mae_ratio)
hours_with_data.append(hour)
if mae_ratios:
fig.add_trace(go.Scatterpolar(
r=mae_ratios + [mae_ratios[0]], # Ensure closure of the polar plot
theta=[h * 15 for h in hours_with_data] + [0], # Ensure closure at 0 degrees
mode='lines+markers',
name=model_key,
line=dict(color=base_color),
marker=dict(color=base_color, size=8)
))
else:
print(f"No data to plot for {model_key}.") # Debugging print
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, max(max(mae_ratios), 1.0) * 1.1] if mae_ratios else [0, 1.0]),
angularaxis=dict(tickmode='array', tickvals=[h * 15 for h in hours], ticktext=hours)
),
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by Hour of Forecasting',
showlegend=True
)
return fig
# Scatter plots for error distribution
st.subheader('Error Distribution')
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
data_2024 = data[data.index.year > 2023]
for i in range(0, len(forecast_columns), 2):
actual_col = forecast_columns[i]
forecast_col = forecast_columns[i + 1]
if forecast_col in data_2024.columns:
obs = data_2024[actual_col]
pred = data_2024[forecast_col]
error = pred - obs
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
fig.update_layout(title=f'Error Distribution for {forecast_col}')
st.plotly_chart(fig)
st.subheader('Accuracy Metrics (Sorted by rMAE):')
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
st.write(output_text)
data = data.loc[start_date:end_date]
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
for i in range(0, len(forecast_columns), 2):
actual_col = forecast_columns[i]
forecast_col = forecast_columns[i + 1]
if forecast_col in data.columns:
obs = data[actual_col]
pred = data[forecast_col]
error = pred - obs
mae = round(np.mean(np.abs(error)),2)
if 'Load' in actual_col:
persistence = obs.shift(168) # Weekly persistence
else:
persistence = obs.shift(24) # Daily persistence
# Using the whole year's data for rMAE calculations
rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
accuracy_metrics.loc[row_label] = [mae, rmae]
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
accuracy_metrics = accuracy_metrics.round(4)
col1, col2 = st.columns([3, 2])
with col1:
st.dataframe(accuracy_metrics)
with col2:
st.markdown("""
<style>
.big-font {
font-size: 20px;
font-weight: 500;
}
</style>
<div class="big-font">
Equations
</div>
""", unsafe_allow_html=True)
st.markdown(r"""
$\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
$\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$
""")
st.subheader('ACF plots of Errors')
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
for i in range(0, len(forecast_columns), 2):
actual_col = forecast_columns[i]
forecast_col = forecast_columns[i + 1]
if forecast_col in data.columns:
obs = data[actual_col]
pred = data[forecast_col]
error = pred - obs
st.write(f"**ACF of Errors for {actual_col}**")
fig, ax = plt.subplots(figsize=(10, 5))
plot_acf(error.dropna(), ax=ax)
st.pyplot(fig)
acf_values = acf(error.dropna(), nlags=240)
# Section 3: Insights
elif section == 'Insights':
st.header("Insights")
st.write("""
This section provides insights derived from the data and forecasts.
You can visualize trends, anomalies, and other important findings.
""")
# Scatter plots for correlation between wind, solar, and load
st.subheader('Correlation between Wind, Solar, and Load')
st.write('The below scatter plots are made for checking whether there exists a correlation between all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
for x_col, y_col in combinations:
if x_col in data.columns and y_col in data.columns:
# For solar combinations, filter out zero values
if 'Solar_entsoe' in x_col:
filtered_data = data[data['Solar_entsoe'] > 0]
x_values = filtered_data[x_col]
y_values = filtered_data[y_col]
else:
x_values = data[x_col]
y_values = data[y_col]
corr_coef = x_values.corr(y_values)
fig = px.scatter(
x=x_values,
y=y_values,
labels={'x': f'{x_col} [MW]', 'y': f'{y_col} [MW]'},
title=f'{x_col} vs {y_col} (Correlation: {corr_coef:.2f})', color_discrete_sequence=['grey'])
st.plotly_chart(fig)
st.subheader('Weather vs. Generation/Demand')
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and the generation/demand data from ENTSO-E.')
for weather_col in weather_columns:
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
if weather_col in data.columns and actual_col in data.columns:
clean_label = actual_col.replace('_entsoe', '')
if weather_col == 'Temperature':
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
else:
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (km/h)', 'y': clean_label})
fig.update_layout(title=f'{weather_col} vs {actual_col}')
st.plotly_chart(fig)