File size: 1,276 Bytes
25ab7f8
654f874
cffc8b0
 
a10ade2
1b4e6a4
a10ade2
 
 
 
 
 
 
 
 
b999e24
42232fd
 
 
 
a10ade2
6fd7226
 
 
 
 
b999e24
a10ade2
287f384
a10ade2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from skimage import feature
import numpy as np
from PIL import Image


class LBPImageEncoder:
    def __init__(self, numPoints, radius):
        # store the number of points and radius
        self.numPoints = numPoints
        self.radius = radius

    def describe(self, image, eps=1e-7):
        # compute the Local Binary Pattern representation
        # of the image, and then use the LBP representation
        # to build the histogram of patterns
        print(image)
        if image.size == 0:
            print("Error: Input image is empty.")
        img_arr = np.array(image)
        print(img_arr.shape)
        gray_img = image.convert('L')
        if gray_img.size == 0:
            print("Error: Input image is empty.")
        gray_img_arr = np.array(gray_img)
        print(gray_img_arr.shape)
        print(gray_img)
        print(gray_img)
        lbp = feature.local_binary_pattern(gray_img, self.numPoints, self.radius, method="uniform")
        (hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, self.numPoints + 3), range=(0, self.numPoints + 2))
        # normalize the histogram
        hist = hist.astype("float")
        hist /= (hist.sum() + eps)
        print(hist)
        # return the histogram of Local Binary Patterns
        return hist