Spaces:
Runtime error
Runtime error
from colordescriptor import ColorDescriptor | |
from CLIP import CLIPImageEncoder | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
from datasets import * | |
dataset = load_dataset("huggan/CelebA-faces") | |
candidate_subset = dataset["train"].select(range(10)) # This is a small CBIR app! :D | |
def emb_dataset(dataset): | |
# This function might need to be split up, to reduce start-up time of app | |
# It could also use batches to increase speed | |
# If indexes are saved in files, this is all not really necessary | |
## Color Embeddings | |
cd = ColorDescriptor((8, 12, 3)) | |
dataset_with_embeddings = dataset.map(lambda row: {'color_embeddings': cd.describe(row["image"])}) # we assume that dataset has a column 'image' | |
## CLIP Embeddings | |
clip_model = CLIPImageEncoder() | |
dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'clip_embeddings': clip_model.encode_image(row["image"])}) | |
# Add index | |
dataset_with_embeddings.add_faiss_index(column='color_embeddings') | |
dataset_with_embeddings.add_faiss_index(column='clip_embeddings') | |
print(dataset_with_embeddings) | |
return dataset_with_embeddings | |
dataset_with_embeddings = emb_dataset(candidate_subset) | |
# Main function, to find similar images | |
# TODO: allow different descriptor/embedding functions | |
# TODO: implement different distance measures | |
def get_neighbors(query_image, selected_descriptor, top_k=5): | |
"""Returns the top k nearest examples to the query image. | |
Args: | |
query_image: A PIL object representing the query image. | |
top_k: An integer representing the number of nearest examples to return. | |
Returns: | |
A list of the top_k most similar images as PIL objects. | |
""" | |
if "Color Descriptor" in selected_descriptor: | |
cd = ColorDescriptor((8, 12, 3)) | |
qi_embedding = cd.describe(query_image) | |
qi_np = np.array(qi_embedding) | |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( | |
'color_embeddings', qi_np, k=top_k) | |
images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings | |
return images | |
if "CLIP" in selected_descriptor: | |
clip_model = CLIPImageEncoder() | |
qi_embedding = clip_model.encode_image(query_image) | |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( | |
'clip_embeddings', qi_embedding, k=top_k) | |
images = retrieved_examples['image'] | |
return images | |
else: | |
print("This descriptor is not yet supported :(") | |
return [] | |
# Define the Gradio Interface | |
iface = gr.Interface( | |
fn=get_neighbors, | |
inputs=[ | |
gr.Image(type="pil", label="Your Image"), | |
gr.CheckboxGroup(["Color Descriptor", "LBP", "CLIP"], label="Descriptor method?"), | |
], | |
outputs=gr.Gallery(), | |
title="Image Similarity Gallery", | |
description="Upload an image and get similar images", | |
allow_flagging="never" | |
) | |
# Launch the Gradio interface | |
iface.launch() | |