Spaces:
Runtime error
Runtime error
from transformers import AutoProcessor, CLIPModel | |
import torch | |
class CLIPImageEncoder: | |
""" | |
A class for encoding images using the CLIP model. | |
Args: | |
device (str): The device to run the model on (default: "cpu"). | |
Attributes: | |
device (str): The device to run the model on. | |
model (CLIPModel): The CLIP model used for image encoding. | |
processor (AutoProcessor): The tokenizer and input processor for the CLIP model. | |
""" | |
def __init__(self, device="cpu"): | |
self.device = device | |
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
def encode_image(self, image_pil): | |
""" | |
Encodes a single image using the CLIP model. | |
Args: | |
image_pil: A PIL Image object representing the image to encode. | |
Returns: | |
numpy.ndarray: The CLIP embedding for the image. | |
""" | |
with torch.no_grad(): | |
input = self.processor(images=image_pil, return_tensors="pt") | |
image_features = self.model.get_image_features(**input) | |
return image_features.cpu().detach().numpy()[0] | |
def encode_images(self, batch): | |
""" | |
Encodes a batch of images using the CLIP model. | |
Args: | |
batch (Dict[str, Any]): A dictionary containing the batch of images to encode. | |
Returns: | |
Dict[str, Any]: A dictionary containing the CLIP embeddings for the batch of images. | |
""" | |
images = batch["image"] | |
input = self.processor(images=images, return_tensors="pt") | |
with torch.no_grad(): | |
image_features = self.model.get_image_features(**input) | |
return {"clip_embeddings": image_features.cpu().detach().numpy()} | |