bendeguzszabo's picture
Update src/CLIP.py
6d93dbe
from transformers import AutoProcessor, CLIPModel
import torch
class CLIPImageEncoder:
"""
A class for encoding images using the CLIP model.
Args:
device (str): The device to run the model on (default: "cpu").
Attributes:
device (str): The device to run the model on.
model (CLIPModel): The CLIP model used for image encoding.
processor (AutoProcessor): The tokenizer and input processor for the CLIP model.
"""
def __init__(self, device="cpu"):
self.device = device
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
def encode_image(self, image_pil):
"""
Encodes a single image using the CLIP model.
Args:
image_pil: A PIL Image object representing the image to encode.
Returns:
numpy.ndarray: The CLIP embedding for the image.
"""
with torch.no_grad():
input = self.processor(images=image_pil, return_tensors="pt")
image_features = self.model.get_image_features(**input)
return image_features.cpu().detach().numpy()[0]
def encode_images(self, batch):
"""
Encodes a batch of images using the CLIP model.
Args:
batch (Dict[str, Any]): A dictionary containing the batch of images to encode.
Returns:
Dict[str, Any]: A dictionary containing the CLIP embeddings for the batch of images.
"""
images = batch["image"]
input = self.processor(images=images, return_tensors="pt")
with torch.no_grad():
image_features = self.model.get_image_features(**input)
return {"clip_embeddings": image_features.cpu().detach().numpy()}