Samuel Schmidt commited on
Commit
49a4ce1
·
1 Parent(s): f9494ca

Deleted old files

Browse files
src/haarcascade_frontalface_default.xml DELETED
The diff for this file is too large to render. See raw diff
 
src/index.py DELETED
@@ -1,32 +0,0 @@
1
- # # import the necessary packages
2
- # from colordescriptor import ColorDescriptor
3
- # import glob
4
- # import cv2
5
-
6
-
7
- # class Indexer:
8
- # def __init__(self, indexPath):
9
- # # store our index path
10
- # self.indexPath = indexPath
11
-
12
- # def index(self):
13
- # # initialize the color descriptor
14
- # cd = ColorDescriptor((8, 12, 3))
15
-
16
- # # open the output index file for writing
17
- # output = open(self.indexPath, "w")
18
-
19
- # # use glob to grab the image paths and loop over them
20
- # for imagePath in glob.glob("../static/images/" + "/*.png"):
21
- # # extract the image ID (i.e. the unique filename) from the image
22
- # # path and load the image itself
23
- # imageID = imagePath[imagePath.rfind("/") + 1:]
24
- # image = cv2.imread(imagePath)
25
- # # describe the image
26
- # features = cd.describe(image)
27
- # # write the features to file
28
- # features = [str(f) for f in features]
29
- # output.write("%s,%s\n" % (imageID, ",".join(features)))
30
-
31
- # # close the index file
32
- # output.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/search.py DELETED
@@ -1,31 +0,0 @@
1
- # from colordescriptor import ColorDescriptor
2
- # from searcher import Searcher
3
- # import argparse
4
- # import cv2
5
-
6
- # # construct the argument parser and parse the arguments
7
- # ap = argparse.ArgumentParser()
8
- # ap.add_argument("-i", "--index", required = True,
9
- # help = "Path to where the computed index will be stored")
10
- # ap.add_argument("-q", "--query", required = True,
11
- # help = "Path to the query image")
12
- # ap.add_argument("-r", "--result-path", required = True,
13
- # help = "Path to the result path")
14
- # args = vars(ap.parse_args())
15
-
16
- # # initialize the image descriptor
17
- # cd = ColorDescriptor((8, 12, 3))
18
- # # load the query image and describe it
19
- # query = cv2.imread(args["query"])
20
- # features = cd.describe(query)
21
- # # perform the search
22
- # searcher = Searcher(args["index"])
23
- # results = searcher.search(features)
24
- # # display the query
25
- # cv2.imshow("Query", query)
26
- # # loop over the results
27
- # for (score, resultID) in results:
28
- # # load the result image and display it
29
- # result = cv2.imread(args["result_path"] + "/" + resultID)
30
- # cv2.imshow("Result", result)
31
- # cv2.waitKey(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/searcher.py DELETED
@@ -1,47 +0,0 @@
1
- # import numpy as np
2
- # import csv
3
-
4
- # class Searcher:
5
- # def __init__(self, indexPath):
6
- # # store our index path
7
- # self.indexPath = indexPath
8
-
9
-
10
- # def chi2_distance(self, histA, histB, eps = 1e-10):
11
- # # compute the chi-squared distance
12
- # d = 0.5 * np.sum([((a - b) ** 2) / (a + b + eps)
13
- # for (a, b) in zip(histA, histB)])
14
- # # return the chi-squared distance
15
- # return d
16
-
17
- # def search(self, queryFeatures, limit = 3):
18
- # # initialize our dictionary of results
19
- # results = {}
20
- # # open the index file for reading
21
- # with open(self.indexPath) as f:
22
- # # initialize the CSV reader
23
- # reader = csv.reader(f)
24
- # # loop over the rows in the index
25
- # for row in reader:
26
- # # parse out the image ID and features, then compute the
27
- # # chi-squared distance between the features in our index
28
- # # and our query features
29
- # features = [float(x) for x in row[1:]]
30
- # d = self.chi2_distance(features, queryFeatures)
31
- # # now that we have the distance between the two feature
32
- # # vectors, we can udpate the results dictionary -- the
33
- # # key is the current image ID in the index and the
34
- # # value is the distance we just computed, representing
35
- # # how 'similar' the image in the index is to our query
36
- # results[row[0]] = d
37
-
38
- # # close the reader
39
- # f.close()
40
-
41
- # # sort our results, so that the smaller distances (i.e. the
42
- # # more relevant images are at the front of the list)
43
- # path = "home/user/app/static/images/"
44
- # results = sorted([(v, f"{path}{k}") for (k, v) in results.items()])
45
-
46
- # # return our (limited) results
47
- # return results[:limit]