Spaces:
Runtime error
Runtime error
Samuel Schmidt
commited on
Commit
·
8e7c132
1
Parent(s):
e64c54e
Update src/app.py
Browse files- src/app.py +4 -8
src/app.py
CHANGED
@@ -11,19 +11,16 @@ dataset = load_dataset("huggan/CelebA-faces")
|
|
11 |
candidate_subset = dataset["train"].select(range(10)) # This is a small CBIR app! :D
|
12 |
|
13 |
def index_dataset(dataset):
|
14 |
-
# This function might need to be split up, to reduce start-up time of app
|
15 |
-
# It could also use batches to increase speed
|
16 |
-
# If indexes are saved in files, this is all not really necessary
|
17 |
|
18 |
-
|
19 |
cd = ColorDescriptor((8, 12, 3))
|
20 |
-
dataset_with_embeddings = dataset.map(lambda row: {'color_embeddings': cd.describe(row["image"])})
|
21 |
|
22 |
-
|
23 |
clip_model = CLIPImageEncoder()
|
24 |
dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16)
|
25 |
|
26 |
-
|
27 |
lbp_model = LBPImageEncoder(8,2)
|
28 |
dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'lbp_embeddings': lbp_model.preprocess_img(row["image"])})
|
29 |
|
@@ -52,7 +49,6 @@ def check_index(ds):
|
|
52 |
dataset_with_embeddings = check_index(candidate_subset)
|
53 |
|
54 |
# Main function, to find similar images
|
55 |
-
# TODO: allow different descriptor/embedding functions
|
56 |
# TODO: implement different distance measures
|
57 |
|
58 |
def get_neighbors(query_image, selected_descriptor, top_k=5):
|
|
|
11 |
candidate_subset = dataset["train"].select(range(10)) # This is a small CBIR app! :D
|
12 |
|
13 |
def index_dataset(dataset):
|
|
|
|
|
|
|
14 |
|
15 |
+
print("Color Embeddings")
|
16 |
cd = ColorDescriptor((8, 12, 3))
|
17 |
+
dataset_with_embeddings = dataset.map(lambda row: {'color_embeddings': cd.describe(row["image"])})
|
18 |
|
19 |
+
print("CLIP Embeddings")
|
20 |
clip_model = CLIPImageEncoder()
|
21 |
dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16)
|
22 |
|
23 |
+
print("LBP Embeddings")
|
24 |
lbp_model = LBPImageEncoder(8,2)
|
25 |
dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'lbp_embeddings': lbp_model.preprocess_img(row["image"])})
|
26 |
|
|
|
49 |
dataset_with_embeddings = check_index(candidate_subset)
|
50 |
|
51 |
# Main function, to find similar images
|
|
|
52 |
# TODO: implement different distance measures
|
53 |
|
54 |
def get_neighbors(query_image, selected_descriptor, top_k=5):
|