Spaces:
Runtime error
Runtime error
Samuel Schmidt
commited on
Commit
·
934a274
1
Parent(s):
6d2b087
Update src/LBP.py
Browse files- src/LBP.py +21 -8
src/LBP.py
CHANGED
@@ -2,6 +2,7 @@ import cv2
|
|
2 |
from skimage import feature
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
|
|
5 |
class LBPImageEncoder:
|
6 |
def __init__(self, numPoints, radius):
|
7 |
self.numPoints = numPoints
|
@@ -9,10 +10,12 @@ class LBPImageEncoder:
|
|
9 |
|
10 |
def describe(self, image, eps=1e-7):
|
11 |
lbp = feature.local_binary_pattern(image, self.numPoints, self.radius)
|
12 |
-
hist =
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
def face_detection(image):
|
16 |
cascadePath = "haarcascade_frontalface_default.xml"
|
17 |
detector = cv2.CascadeClassifier(cascadePath)
|
18 |
|
@@ -23,14 +26,24 @@ class LBPImageEncoder:
|
|
23 |
def preprocess_img(self, imagePath):
|
24 |
img = cv2.imread(imagePath)
|
25 |
rects = self.face_detection(img)
|
|
|
|
|
26 |
for (x, y, w, h) in rects:
|
27 |
face = img[y:y + h, x:x + w]
|
28 |
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
29 |
-
# plt.imshow(face , cmap="gray")
|
30 |
-
# print(face.shape)
|
31 |
-
# face = np.array(face)
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
2 |
from skimage import feature
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
+
|
6 |
class LBPImageEncoder:
|
7 |
def __init__(self, numPoints, radius):
|
8 |
self.numPoints = numPoints
|
|
|
10 |
|
11 |
def describe(self, image, eps=1e-7):
|
12 |
lbp = feature.local_binary_pattern(image, self.numPoints, self.radius)
|
13 |
+
hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, self.numPoints + 3), range=(0, self.numPoints + 2))
|
14 |
+
hist = hist.astype("float")
|
15 |
+
hist /= (hist.sum() + eps)
|
16 |
+
return hist
|
17 |
|
18 |
+
def face_detection(self, image):
|
19 |
cascadePath = "haarcascade_frontalface_default.xml"
|
20 |
detector = cv2.CascadeClassifier(cascadePath)
|
21 |
|
|
|
26 |
def preprocess_img(self, imagePath):
|
27 |
img = cv2.imread(imagePath)
|
28 |
rects = self.face_detection(img)
|
29 |
+
feature_vector = np.zeros((self.numPoints + 2) * 3)
|
30 |
+
|
31 |
for (x, y, w, h) in rects:
|
32 |
face = img[y:y + h, x:x + w]
|
33 |
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
34 |
|
35 |
+
lbp = self.describe(face)
|
36 |
+
feature_vector[(self.numPoints + 2) * 0: (self.numPoints + 2) * 1] += lbp
|
37 |
|
38 |
+
# Process green channel
|
39 |
+
lbp = self.describe(face[:, :, 1])
|
40 |
+
feature_vector[(self.numPoints + 2) * 1: (self.numPoints + 2) * 2] += lbp
|
41 |
+
|
42 |
+
# Process blue channel
|
43 |
+
lbp = self.describe(face[:, :, 2])
|
44 |
+
feature_vector[(self.numPoints + 2) * 2: (self.numPoints + 2) * 3] += lbp
|
45 |
+
|
46 |
+
feature_vector /= len(rects)
|
47 |
+
|
48 |
+
return feature_vector
|
49 |
|