slevis commited on
Commit
ac1c6ae
·
0 Parent(s):

Duplicate from s-l-s/cbir-image-similarity

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Cbir Image Similarity
3
+ emoji: 🏢
4
+ colorFrom: green
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.19.1
8
+ app_file: src/app.py
9
+ pinned: false
10
+ license: openrail
11
+ duplicated_from: s-l-s/cbir-image-similarity
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy==1.21.6
3
+ opencv-python==4.5.4.60
4
+ faiss-cpu
5
+ transformers
6
+ torch
src/.gitattributes ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ *.png filter=lfs diff=lfs merge=lfs -text
2
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
3
+ *.jpg filter=lfs diff=lfs merge=lfs -text
4
+ *.gif filter=lfs diff=lfs merge=lfs -text
src/CLIP.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoProcessor, CLIPModel
2
+
3
+
4
+ class CLIPImageEncoder:
5
+ def __init__(self, device="cpu"):
6
+ self.device = device
7
+ self.model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
8
+ self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
9
+
10
+ def encode_image(self, image_pil):
11
+ input = self.processor(images=image_pil, return_tensors="pt")
12
+ image_features = self.model.get_image_features(**input)
13
+ return image_features.cpu().detach().numpy()[0]
src/FaRL.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #import torch
2
+ #import clip
3
+
4
+
5
+ #class CLIPImageEncoder:
6
+ # def __init__(self, device="cpu"):
7
+ # self.device = device
8
+ # self.model, self.preprocess = clip.load("ViT-B/16", device=device)
9
+ #
10
+ # def encode_image(self, image_pil):
11
+ # print("Encoding image with CLIP")
12
+ # with torch.no_grad():
13
+ # image_preprocessed = self.preprocess(image_pil).unsqueeze(0).to(self.device)
14
+ # image_features = self.model.encode_image(image_preprocessed)
15
+ # return image_features.cpu().numpy()[0]
src/__pycache__/colordescriptor.cpython-39.pyc ADDED
Binary file (1.52 kB). View file
 
src/__pycache__/searcher.cpython-39.pyc ADDED
Binary file (1.55 kB). View file
 
src/app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from colordescriptor import ColorDescriptor
2
+ from CLIP import CLIPImageEncoder
3
+ import gradio as gr
4
+ import cv2
5
+ import numpy as np
6
+ from datasets import *
7
+
8
+ dataset = load_dataset("huggan/CelebA-faces")
9
+ candidate_subset = dataset["train"].select(range(1000)) # This is a small CBIR app! :D
10
+
11
+ def emb_dataset(dataset):
12
+ # This function might need to be split up, to reduce start-up time of app
13
+ # It could also use batches to increase speed
14
+ # If indexes are saved in files, this is all not really necessary
15
+
16
+ ## Color Embeddings
17
+ cd = ColorDescriptor((8, 12, 3))
18
+ dataset_with_embeddings = dataset.map(lambda row: {'color_embeddings': cd.describe(row["image"])}) # we assume that dataset has a column 'image'
19
+ dataset_with_embeddings.add_faiss_index(column='color_embeddings')
20
+
21
+ ## CLIP Embeddings
22
+ clip_model = CLIPImageEncoder()
23
+ dataset_with_embeddings = dataset.map(lambda row: {'clip_embeddings': clip_model.encode_image(row["image"])})
24
+ dataset_with_embeddings.add_faiss_index(column='clip_embeddings')
25
+ dataset_with_embeddings # Just to check, if okay
26
+
27
+ return dataset_with_embeddings
28
+
29
+ dataset_with_embeddings = emb_dataset(candidate_subset)
30
+
31
+ # Main function, to find similar images
32
+ # TODO: allow different descriptor/embedding functions
33
+ # TODO: implement different distance measures
34
+
35
+ def get_neighbors(query_image, selected_descriptor, top_k=5):
36
+ """Returns the top k nearest examples to the query image.
37
+
38
+ Args:
39
+ query_image: A PIL object representing the query image.
40
+ top_k: An integer representing the number of nearest examples to return.
41
+
42
+ Returns:
43
+ A list of the top_k most similar images as PIL objects.
44
+ """
45
+ if "Color Descriptor" in selected_descriptor:
46
+ cd = ColorDescriptor((8, 12, 3))
47
+ qi_embedding = cd.describe(query_image)
48
+ qi_np = np.array(qi_embedding)
49
+ scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
50
+ 'color_embeddings', qi_np, k=top_k)
51
+ images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
52
+ return images
53
+ if "CLIP" in selected_descriptor:
54
+ clip_model = CLIPImageEncoder()
55
+ qi_embedding = clip_model.encode_image(query_image)
56
+ scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
57
+ 'clip_embeddings', qi_embedding, k=top_k)
58
+ images = retrieved_examples['image']
59
+ return images
60
+ else:
61
+ print("This descriptor is not yet supported :(")
62
+ return []
63
+
64
+
65
+ # Define the Gradio Interface
66
+
67
+
68
+ iface = gr.Interface(
69
+ fn=get_neighbors,
70
+ inputs=[
71
+ gr.Image(type="pil", label="Your Image"),
72
+ gr.CheckboxGroup(["Color Descriptor", "LBP", "CLIP"], label="Descriptor method?"),
73
+ ],
74
+ outputs=gr.Gallery(),
75
+ title="Image Similarity Gallery",
76
+ description="Upload an image and get similar images",
77
+ allow_flagging="never"
78
+ )
79
+
80
+ # Launch the Gradio interface
81
+ iface.launch()
src/colordescriptor.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ from helper import pil_cv2_image_converter
4
+
5
+ class ColorDescriptor:
6
+ def __init__(self, bins):
7
+ # store the number of bins for the 3D histogram
8
+ self.bins = bins
9
+
10
+ def histogram(self, image, mask):
11
+ # extract a 3D color histogram from the masked region of the
12
+ # image, using the supplied number of bins per channel
13
+ hist = cv2.calcHist([image], [0, 1, 2], mask, self.bins,
14
+ [0, 180, 0, 256, 0, 256])
15
+
16
+ hist = cv2.normalize(hist, hist).flatten()
17
+ # return the histogram
18
+ return hist
19
+
20
+ def describe(self, image):
21
+ # first, convert image to cv2 from pil
22
+ # TODO: Add check, if already cv2 image
23
+ image = pil_cv2_image_converter(image)
24
+ # convert the image to the HSV color space and initialize
25
+ # the features used to quantify the image
26
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
27
+ features = []
28
+ # grab the dimensions and compute the center of the image
29
+ (h, w) = image.shape[:2]
30
+ (cX, cY) = (int(w * 0.5), int(h * 0.5))
31
+
32
+ # divide the image into four rectangles/segments (top-left,
33
+ # top-right, bottom-right, bottom-left)
34
+ segments = [(0, cX, 0, cY), (cX, w, 0, cY), (cX, w, cY, h),
35
+ (0, cX, cY, h)]
36
+ # construct an elliptical mask representing the center of the
37
+ # image
38
+ (axesX, axesY) = (int(w * 0.75) // 2, int(h * 0.75) // 2)
39
+ ellipMask = np.zeros(image.shape[:2], dtype = "uint8")
40
+ cv2.ellipse(ellipMask, (cX, cY), (axesX, axesY), 0, 0, 360, 255, -1)
41
+
42
+ # loop over the segments
43
+ for (startX, endX, startY, endY) in segments:
44
+ # construct a mask for each corner of the image, subtracting
45
+ # the elliptical center from it
46
+ cornerMask = np.zeros(image.shape[:2], dtype = "uint8")
47
+ cv2.rectangle(cornerMask, (startX, startY), (endX, endY), 255, -1)
48
+ cornerMask = cv2.subtract(cornerMask, ellipMask)
49
+ # extract a color histogram from the image, then update the
50
+ # feature vector
51
+ hist = self.histogram(image, cornerMask)
52
+ features.extend(hist)
53
+
54
+ # extract a color histogram from the elliptical region and
55
+ # update the feature vector
56
+ hist = self.histogram(image, ellipMask)
57
+ features.extend(hist)
58
+
59
+ # return the feature vector
60
+ return features
src/helper.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+ def pil_cv2_image_converter(image):
5
+ numpy_image = np.array(image)
6
+ # Convert to an OpenCV image; notice the COLOR_RGB2BGR flag, which means
7
+ # that the color is converted from RGB to BGR format.
8
+ opencv_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR)
9
+ return opencv_image
src/index.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # import the necessary packages
2
+ # from colordescriptor import ColorDescriptor
3
+ # import glob
4
+ # import cv2
5
+
6
+
7
+ # class Indexer:
8
+ # def __init__(self, indexPath):
9
+ # # store our index path
10
+ # self.indexPath = indexPath
11
+
12
+ # def index(self):
13
+ # # initialize the color descriptor
14
+ # cd = ColorDescriptor((8, 12, 3))
15
+
16
+ # # open the output index file for writing
17
+ # output = open(self.indexPath, "w")
18
+
19
+ # # use glob to grab the image paths and loop over them
20
+ # for imagePath in glob.glob("../static/images/" + "/*.png"):
21
+ # # extract the image ID (i.e. the unique filename) from the image
22
+ # # path and load the image itself
23
+ # imageID = imagePath[imagePath.rfind("/") + 1:]
24
+ # image = cv2.imread(imagePath)
25
+ # # describe the image
26
+ # features = cd.describe(image)
27
+ # # write the features to file
28
+ # features = [str(f) for f in features]
29
+ # output.write("%s,%s\n" % (imageID, ",".join(features)))
30
+
31
+ # # close the index file
32
+ # output.close()
src/search.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from colordescriptor import ColorDescriptor
2
+ # from searcher import Searcher
3
+ # import argparse
4
+ # import cv2
5
+
6
+ # # construct the argument parser and parse the arguments
7
+ # ap = argparse.ArgumentParser()
8
+ # ap.add_argument("-i", "--index", required = True,
9
+ # help = "Path to where the computed index will be stored")
10
+ # ap.add_argument("-q", "--query", required = True,
11
+ # help = "Path to the query image")
12
+ # ap.add_argument("-r", "--result-path", required = True,
13
+ # help = "Path to the result path")
14
+ # args = vars(ap.parse_args())
15
+
16
+ # # initialize the image descriptor
17
+ # cd = ColorDescriptor((8, 12, 3))
18
+ # # load the query image and describe it
19
+ # query = cv2.imread(args["query"])
20
+ # features = cd.describe(query)
21
+ # # perform the search
22
+ # searcher = Searcher(args["index"])
23
+ # results = searcher.search(features)
24
+ # # display the query
25
+ # cv2.imshow("Query", query)
26
+ # # loop over the results
27
+ # for (score, resultID) in results:
28
+ # # load the result image and display it
29
+ # result = cv2.imread(args["result_path"] + "/" + resultID)
30
+ # cv2.imshow("Result", result)
31
+ # cv2.waitKey(0)
src/searcher.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import numpy as np
2
+ # import csv
3
+
4
+ # class Searcher:
5
+ # def __init__(self, indexPath):
6
+ # # store our index path
7
+ # self.indexPath = indexPath
8
+
9
+
10
+ # def chi2_distance(self, histA, histB, eps = 1e-10):
11
+ # # compute the chi-squared distance
12
+ # d = 0.5 * np.sum([((a - b) ** 2) / (a + b + eps)
13
+ # for (a, b) in zip(histA, histB)])
14
+ # # return the chi-squared distance
15
+ # return d
16
+
17
+ # def search(self, queryFeatures, limit = 3):
18
+ # # initialize our dictionary of results
19
+ # results = {}
20
+ # # open the index file for reading
21
+ # with open(self.indexPath) as f:
22
+ # # initialize the CSV reader
23
+ # reader = csv.reader(f)
24
+ # # loop over the rows in the index
25
+ # for row in reader:
26
+ # # parse out the image ID and features, then compute the
27
+ # # chi-squared distance between the features in our index
28
+ # # and our query features
29
+ # features = [float(x) for x in row[1:]]
30
+ # d = self.chi2_distance(features, queryFeatures)
31
+ # # now that we have the distance between the two feature
32
+ # # vectors, we can udpate the results dictionary -- the
33
+ # # key is the current image ID in the index and the
34
+ # # value is the distance we just computed, representing
35
+ # # how 'similar' the image in the index is to our query
36
+ # results[row[0]] = d
37
+
38
+ # # close the reader
39
+ # f.close()
40
+
41
+ # # sort our results, so that the smaller distances (i.e. the
42
+ # # more relevant images are at the front of the list)
43
+ # path = "home/user/app/static/images/"
44
+ # results = sorted([(v, f"{path}{k}") for (k, v) in results.items()])
45
+
46
+ # # return our (limited) results
47
+ # return results[:limit]