from colordescriptor import ColorDescriptor from CLIP import CLIPImageEncoder from LBP import LBPImageEncoder import gradio as gr import os import cv2 import numpy as np from datasets import * dataset = load_dataset("huggan/CelebA-faces", download_mode='force_redownload') dataset.cleanup_cache_files() candidate_subset = dataset["train"].select(range(10)) # This is a small CBIR app! :D def index_dataset(dataset): print(dataset) print("LBP Embeddings") lbp_model = LBPImageEncoder(8,2) dataset_with_embeddings = dataset.map(lambda row: {'lbp_embeddings': lbp_model.describe(row["image"])}) print("Color Embeddings") cd = ColorDescriptor((8, 12, 3)) dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'color_embeddings': cd.describe(row["image"])}) print("CLIP Embeddings") clip_model = CLIPImageEncoder() dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16) # Add index dataset_with_embeddings.add_faiss_index(column='color_embeddings') dataset_with_embeddings.save_faiss_index('color_embeddings', 'color_index.faiss') dataset_with_embeddings.add_faiss_index(column='clip_embeddings') dataset_with_embeddings.add_faiss_index(column='lbp_embeddings') dataset_with_embeddings.save_faiss_index('clip_embeddings', 'clip_index.faiss') print(dataset_with_embeddings) return dataset_with_embeddings def check_index(ds): index_path = "my_index.faiss" if os.path.isfile('color_index.faiss') and os.path.isfile('clip_index.faiss'): ds.load_faiss_index('color_embeddings', 'color_index.faiss') return ds.load_faiss_index('clip_embeddings', 'clip_index.faiss') else: return index_dataset(ds) dataset_with_embeddings = check_index(candidate_subset) # Main function, to find similar images # TODO: implement different distance measures def get_neighbors(query_image, selected_descriptor, top_k=5): """Returns the top k nearest examples to the query image. Args: query_image: A PIL object representing the query image. top_k: An integer representing the number of nearest examples to return. Returns: A list of the top_k most similar images as PIL objects. """ if "Color Descriptor" in selected_descriptor: cd = ColorDescriptor((8, 12, 3)) qi_embedding = cd.describe(query_image) qi_np = np.array(qi_embedding) scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'color_embeddings', qi_np, k=top_k) images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings return images if "CLIP" in selected_descriptor: clip_model = CLIPImageEncoder() qi_embedding = clip_model.encode_image(query_image) scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'clip_embeddings', qi_embedding, k=top_k) images = retrieved_examples['image'] return images if "LBP" in selected_descriptor: lbp_model = LBPImageEncoder(8,2) qi_embedding = lbp_model.describe(query_image) scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'lbp_embeddings', qi_embedding, k=top_k) images = retrieved_examples['image'] return images else: print("This descriptor is not yet supported :(") return [] # Define the Gradio Interface with gr.Blocks() as demo: image_input = gr.Image(type="pil", label="Please upload an image") checkboxes_descr = gr.CheckboxGroup(["Color Descriptor", "LBP", "CLIP"], label="Please choose an descriptor") btn = gr.Button(value="Submit") gallery_output = gr.Gallery() btn.click(get_neighbors, inputs=[image_input, checkboxes_descr], outputs=[gallery_output]) btn_index = gr.Button(value="Re-index Dataset") btn_index.click(index_dataset) if __name__ == "__main__": demo.launch()