import cv2 from skimage import feature import matplotlib.pyplot as plt import numpy as np class LBPImageEncoder: def __init__(self, numPoints, radius): self.numPoints = numPoints self.radius = radius def describe(self, image, eps=1e-7): lbp = feature.local_binary_pattern(image, self.numPoints, self.radius) hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, self.numPoints + 3), range=(0, self.numPoints + 2)) hist = hist.astype("float") hist /= (hist.sum() + eps) return hist def face_detection(self, image): cascadePath = "haarcascade_frontalface_default.xml" detector = cv2.CascadeClassifier() detector.load(cascadePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) rects = detector.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=10, minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE) return rects def preprocess_img(self, image): img = np.array(image) rects = self.face_detection(img) feature_vector = np.zeros((self.numPoints + 2) * 3) for (x, y, w, h) in rects: face = img[y:y + h, x:x + w] face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) lbp = self.describe(face) feature_vector[(self.numPoints + 2) * 0: (self.numPoints + 2) * 1] += lbp # Process green channel lbp = self.describe(face[:, :, 1]) feature_vector[(self.numPoints + 2) * 1: (self.numPoints + 2) * 2] += lbp # Process blue channel lbp = self.describe(face[:, :, 2]) feature_vector[(self.numPoints + 2) * 2: (self.numPoints + 2) * 3] += lbp feature_vector /= len(rects) return feature_vector