Spaces:
EK100
/
Runtime error

File size: 10,994 Bytes
f57bf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import re
import contextlib
import numpy as np
import torch
import warnings
import dnnlib

#----------------------------------------------------------------------------
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
# same constant is used multiple times.

_constant_cache = dict()

def constant(value, shape=None, dtype=None, device=None, memory_format=None):
    value = np.asarray(value)
    if shape is not None:
        shape = tuple(shape)
    if dtype is None:
        dtype = torch.get_default_dtype()
    if device is None:
        device = torch.device('cpu')
    if memory_format is None:
        memory_format = torch.contiguous_format

    key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
    tensor = _constant_cache.get(key, None)
    if tensor is None:
        tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
        if shape is not None:
            tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
        tensor = tensor.contiguous(memory_format=memory_format)
        _constant_cache[key] = tensor
    return tensor

#----------------------------------------------------------------------------
# Replace NaN/Inf with specified numerical values.

try:
    nan_to_num = torch.nan_to_num # 1.8.0a0
except AttributeError:
    def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
        assert isinstance(input, torch.Tensor)
        if posinf is None:
            posinf = torch.finfo(input.dtype).max
        if neginf is None:
            neginf = torch.finfo(input.dtype).min
        assert nan == 0
        return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)

#----------------------------------------------------------------------------
# Symbolic assert.

try:
    symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
except AttributeError:
    symbolic_assert = torch.Assert # 1.7.0

#----------------------------------------------------------------------------
# Context manager to suppress known warnings in torch.jit.trace().

class suppress_tracer_warnings(warnings.catch_warnings):
    def __enter__(self):
        super().__enter__()
        warnings.simplefilter('ignore', category=torch.jit.TracerWarning)
        return self

#----------------------------------------------------------------------------
# Assert that the shape of a tensor matches the given list of integers.
# None indicates that the size of a dimension is allowed to vary.
# Performs symbolic assertion when used in torch.jit.trace().

def assert_shape(tensor, ref_shape):
    if tensor.ndim != len(ref_shape):
        raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
    for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
        if ref_size is None:
            pass
        elif isinstance(ref_size, torch.Tensor):
            with suppress_tracer_warnings(): # as_tensor results are registered as constants
                symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
        elif isinstance(size, torch.Tensor):
            with suppress_tracer_warnings(): # as_tensor results are registered as constants
                symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
        elif size != ref_size:
            raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')

#----------------------------------------------------------------------------
# Function decorator that calls torch.autograd.profiler.record_function().

def profiled_function(fn):
    def decorator(*args, **kwargs):
        with torch.autograd.profiler.record_function(fn.__name__):
            return fn(*args, **kwargs)
    decorator.__name__ = fn.__name__
    return decorator

#----------------------------------------------------------------------------
# Sampler for torch.utils.data.DataLoader that loops over the dataset
# indefinitely, shuffling items as it goes.

class InfiniteSampler(torch.utils.data.Sampler):
    def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
        assert len(dataset) > 0
        assert num_replicas > 0
        assert 0 <= rank < num_replicas
        assert 0 <= window_size <= 1
        super().__init__(dataset)
        self.dataset = dataset
        self.rank = rank
        self.num_replicas = num_replicas
        self.shuffle = shuffle
        self.seed = seed
        self.window_size = window_size

    def __iter__(self):
        order = np.arange(len(self.dataset))
        rnd = None
        window = 0
        if self.shuffle:
            rnd = np.random.RandomState(self.seed)
            rnd.shuffle(order)
            window = int(np.rint(order.size * self.window_size))

        idx = 0
        while True:
            i = idx % order.size
            if idx % self.num_replicas == self.rank:
                yield order[i]
            if window >= 2:
                j = (i - rnd.randint(window)) % order.size
                order[i], order[j] = order[j], order[i]
            idx += 1

#----------------------------------------------------------------------------
# Utilities for operating with torch.nn.Module parameters and buffers.

def params_and_buffers(module):
    assert isinstance(module, torch.nn.Module)
    return list(module.parameters()) + list(module.buffers())

def named_params_and_buffers(module):
    assert isinstance(module, torch.nn.Module)
    return list(module.named_parameters()) + list(module.named_buffers())

def copy_params_and_buffers(src_module, dst_module, require_all=False):
    assert isinstance(src_module, torch.nn.Module)
    assert isinstance(dst_module, torch.nn.Module)
    src_tensors = {name: tensor for name, tensor in named_params_and_buffers(src_module)}
    for name, tensor in named_params_and_buffers(dst_module):
        assert (name in src_tensors) or (not require_all)
        if name in src_tensors:
            tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)

#----------------------------------------------------------------------------
# Context manager for easily enabling/disabling DistributedDataParallel
# synchronization.

@contextlib.contextmanager
def ddp_sync(module, sync):
    assert isinstance(module, torch.nn.Module)
    if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
        yield
    else:
        with module.no_sync():
            yield

#----------------------------------------------------------------------------
# Check DistributedDataParallel consistency across processes.

def check_ddp_consistency(module, ignore_regex=None):
    assert isinstance(module, torch.nn.Module)
    for name, tensor in named_params_and_buffers(module):
        fullname = type(module).__name__ + '.' + name
        if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
            continue
        tensor = tensor.detach()
        other = tensor.clone()
        torch.distributed.broadcast(tensor=other, src=0)
        assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname

#----------------------------------------------------------------------------
# Print summary table of module hierarchy.

def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
    assert isinstance(module, torch.nn.Module)
    assert not isinstance(module, torch.jit.ScriptModule)
    assert isinstance(inputs, (tuple, list))

    # Register hooks.
    entries = []
    nesting = [0]
    def pre_hook(_mod, _inputs):
        nesting[0] += 1
    def post_hook(mod, _inputs, outputs):
        nesting[0] -= 1
        if nesting[0] <= max_nesting:
            outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
            outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
            entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
    hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
    hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]

    # Run module.
    outputs = module(*inputs)
    for hook in hooks:
        hook.remove()

    # Identify unique outputs, parameters, and buffers.
    tensors_seen = set()
    for e in entries:
        e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
        e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
        e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
        tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}

    # Filter out redundant entries.
    if skip_redundant:
        entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]

    # Construct table.
    rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
    rows += [['---'] * len(rows[0])]
    param_total = 0
    buffer_total = 0
    submodule_names = {mod: name for name, mod in module.named_modules()}
    for e in entries:
        name = '<top-level>' if e.mod is module else submodule_names[e.mod]
        param_size = sum(t.numel() for t in e.unique_params)
        buffer_size = sum(t.numel() for t in e.unique_buffers)
        output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs]
        output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
        rows += [[
            name + (':0' if len(e.outputs) >= 2 else ''),
            str(param_size) if param_size else '-',
            str(buffer_size) if buffer_size else '-',
            (output_shapes + ['-'])[0],
            (output_dtypes + ['-'])[0],
        ]]
        for idx in range(1, len(e.outputs)):
            rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
        param_total += param_size
        buffer_total += buffer_size
    rows += [['---'] * len(rows[0])]
    rows += [['Total', str(param_total), str(buffer_total), '-', '-']]

    # Print table.
    widths = [max(len(cell) for cell in column) for column in zip(*rows)]
    print()
    for row in rows:
        print('  '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
    print()
    return outputs

#----------------------------------------------------------------------------