|
Usage: train.py [OPTIONS] |
|
|
|
Train a GAN using the techniques described in the paper "Training |
|
Generative Adversarial Networks with Limited Data". |
|
|
|
Examples: |
|
|
|
# Train with custom images using 1 GPU. |
|
python train.py --outdir=~/training-runs --data=~/my-image-folder |
|
|
|
# Train class-conditional CIFAR-10 using 2 GPUs. |
|
python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \ |
|
--gpus=2 --cfg=cifar --cond=1 |
|
|
|
# Transfer learn MetFaces from FFHQ using 4 GPUs. |
|
python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \ |
|
--gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 |
|
|
|
# Reproduce original StyleGAN2 config F. |
|
python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \ |
|
--gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug |
|
|
|
Base configs (--cfg): |
|
auto Automatically select reasonable defaults based on resolution |
|
and GPU count. Good starting point for new datasets. |
|
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. |
|
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. |
|
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. |
|
paper1024 Reproduce results for MetFaces at 1024x1024. |
|
cifar Reproduce results for CIFAR-10 at 32x32. |
|
|
|
Transfer learning source networks (--resume): |
|
ffhq256 FFHQ trained at 256x256 resolution. |
|
ffhq512 FFHQ trained at 512x512 resolution. |
|
ffhq1024 FFHQ trained at 1024x1024 resolution. |
|
celebahq256 CelebA-HQ trained at 256x256 resolution. |
|
lsundog256 LSUN Dog trained at 256x256 resolution. |
|
<PATH or URL> Custom network pickle. |
|
|
|
Options: |
|
--outdir DIR Where to save the results [required] |
|
--gpus INT Number of GPUs to use [default: 1] |
|
--snap INT Snapshot interval [default: 50 ticks] |
|
--metrics LIST Comma-separated list or "none" [default: |
|
fid50k_full] |
|
--seed INT Random seed [default: 0] |
|
-n, --dry-run Print training options and exit |
|
--data PATH Training data (directory or zip) [required] |
|
--cond BOOL Train conditional model based on dataset |
|
labels [default: false] |
|
--subset INT Train with only N images [default: all] |
|
--mirror BOOL Enable dataset x-flips [default: false] |
|
--cfg [auto|stylegan2|paper256|paper512|paper1024|cifar] |
|
Base config [default: auto] |
|
--gamma FLOAT Override R1 gamma |
|
--kimg INT Override training duration |
|
--batch INT Override batch size |
|
--aug [noaug|ada|fixed] Augmentation mode [default: ada] |
|
--p FLOAT Augmentation probability for --aug=fixed |
|
--target FLOAT ADA target value for --aug=ada |
|
--augpipe [blit|geom|color|filter|noise|cutout|bg|bgc|bgcf|bgcfn|bgcfnc] |
|
Augmentation pipeline [default: bgc] |
|
--resume PKL Resume training [default: noresume] |
|
--freezed INT Freeze-D [default: 0 layers] |
|
--fp32 BOOL Disable mixed-precision training |
|
--nhwc BOOL Use NHWC memory format with FP16 |
|
--nobench BOOL Disable cuDNN benchmarking |
|
--allow-tf32 BOOL Allow PyTorch to use TF32 internally |
|
--workers INT Override number of DataLoader workers |
|
--help Show this message and exit. |
|
|