|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import time |
|
import hashlib |
|
import pickle |
|
import copy |
|
import uuid |
|
import numpy as np |
|
import torch |
|
import dnnlib |
|
|
|
|
|
|
|
class MetricOptions: |
|
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True): |
|
assert 0 <= rank < num_gpus |
|
self.G = G |
|
self.G_kwargs = dnnlib.EasyDict(G_kwargs) |
|
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs) |
|
self.num_gpus = num_gpus |
|
self.rank = rank |
|
self.device = device if device is not None else torch.device('cuda', rank) |
|
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor() |
|
self.cache = cache |
|
|
|
|
|
|
|
_feature_detector_cache = dict() |
|
|
|
def get_feature_detector_name(url): |
|
return os.path.splitext(url.split('/')[-1])[0] |
|
|
|
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False): |
|
assert 0 <= rank < num_gpus |
|
key = (url, device) |
|
if key not in _feature_detector_cache: |
|
is_leader = (rank == 0) |
|
if not is_leader and num_gpus > 1: |
|
torch.distributed.barrier() |
|
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f: |
|
_feature_detector_cache[key] = torch.jit.load(f).eval().to(device) |
|
if is_leader and num_gpus > 1: |
|
torch.distributed.barrier() |
|
return _feature_detector_cache[key] |
|
|
|
|
|
|
|
class FeatureStats: |
|
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None): |
|
self.capture_all = capture_all |
|
self.capture_mean_cov = capture_mean_cov |
|
self.max_items = max_items |
|
self.num_items = 0 |
|
self.num_features = None |
|
self.all_features = None |
|
self.raw_mean = None |
|
self.raw_cov = None |
|
|
|
def set_num_features(self, num_features): |
|
if self.num_features is not None: |
|
assert num_features == self.num_features |
|
else: |
|
self.num_features = num_features |
|
self.all_features = [] |
|
self.raw_mean = np.zeros([num_features], dtype=np.float64) |
|
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64) |
|
|
|
def is_full(self): |
|
return (self.max_items is not None) and (self.num_items >= self.max_items) |
|
|
|
def append(self, x): |
|
x = np.asarray(x, dtype=np.float32) |
|
assert x.ndim == 2 |
|
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items): |
|
if self.num_items >= self.max_items: |
|
return |
|
x = x[:self.max_items - self.num_items] |
|
|
|
self.set_num_features(x.shape[1]) |
|
self.num_items += x.shape[0] |
|
if self.capture_all: |
|
self.all_features.append(x) |
|
if self.capture_mean_cov: |
|
x64 = x.astype(np.float64) |
|
self.raw_mean += x64.sum(axis=0) |
|
self.raw_cov += x64.T @ x64 |
|
|
|
def append_torch(self, x, num_gpus=1, rank=0): |
|
assert isinstance(x, torch.Tensor) and x.ndim == 2 |
|
assert 0 <= rank < num_gpus |
|
if num_gpus > 1: |
|
ys = [] |
|
for src in range(num_gpus): |
|
y = x.clone() |
|
torch.distributed.broadcast(y, src=src) |
|
ys.append(y) |
|
x = torch.stack(ys, dim=1).flatten(0, 1) |
|
self.append(x.cpu().numpy()) |
|
|
|
def get_all(self): |
|
assert self.capture_all |
|
return np.concatenate(self.all_features, axis=0) |
|
|
|
def get_all_torch(self): |
|
return torch.from_numpy(self.get_all()) |
|
|
|
def get_mean_cov(self): |
|
assert self.capture_mean_cov |
|
mean = self.raw_mean / self.num_items |
|
cov = self.raw_cov / self.num_items |
|
cov = cov - np.outer(mean, mean) |
|
return mean, cov |
|
|
|
def save(self, pkl_file): |
|
with open(pkl_file, 'wb') as f: |
|
pickle.dump(self.__dict__, f) |
|
|
|
@staticmethod |
|
def load(pkl_file): |
|
with open(pkl_file, 'rb') as f: |
|
s = dnnlib.EasyDict(pickle.load(f)) |
|
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items) |
|
obj.__dict__.update(s) |
|
return obj |
|
|
|
|
|
|
|
class ProgressMonitor: |
|
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000): |
|
self.tag = tag |
|
self.num_items = num_items |
|
self.verbose = verbose |
|
self.flush_interval = flush_interval |
|
self.progress_fn = progress_fn |
|
self.pfn_lo = pfn_lo |
|
self.pfn_hi = pfn_hi |
|
self.pfn_total = pfn_total |
|
self.start_time = time.time() |
|
self.batch_time = self.start_time |
|
self.batch_items = 0 |
|
if self.progress_fn is not None: |
|
self.progress_fn(self.pfn_lo, self.pfn_total) |
|
|
|
def update(self, cur_items): |
|
assert (self.num_items is None) or (cur_items <= self.num_items) |
|
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items): |
|
return |
|
cur_time = time.time() |
|
total_time = cur_time - self.start_time |
|
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1) |
|
if (self.verbose) and (self.tag is not None): |
|
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}') |
|
self.batch_time = cur_time |
|
self.batch_items = cur_items |
|
|
|
if (self.progress_fn is not None) and (self.num_items is not None): |
|
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total) |
|
|
|
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1): |
|
return ProgressMonitor( |
|
tag = tag, |
|
num_items = num_items, |
|
flush_interval = flush_interval, |
|
verbose = self.verbose, |
|
progress_fn = self.progress_fn, |
|
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo, |
|
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi, |
|
pfn_total = self.pfn_total, |
|
) |
|
|
|
|
|
|
|
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs): |
|
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) |
|
if data_loader_kwargs is None: |
|
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2) |
|
|
|
|
|
cache_file = None |
|
if opts.cache: |
|
|
|
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs) |
|
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8')) |
|
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}' |
|
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl') |
|
|
|
|
|
flag = os.path.isfile(cache_file) if opts.rank == 0 else False |
|
if opts.num_gpus > 1: |
|
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device) |
|
torch.distributed.broadcast(tensor=flag, src=0) |
|
flag = (float(flag.cpu()) != 0) |
|
|
|
|
|
if flag: |
|
return FeatureStats.load(cache_file) |
|
|
|
|
|
num_items = len(dataset) |
|
if max_items is not None: |
|
num_items = min(num_items, max_items) |
|
stats = FeatureStats(max_items=num_items, **stats_kwargs) |
|
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi) |
|
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose) |
|
|
|
|
|
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)] |
|
for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs): |
|
if images.shape[1] == 1: |
|
images = images.repeat([1, 3, 1, 1]) |
|
features = detector(images.to(opts.device), **detector_kwargs) |
|
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank) |
|
progress.update(stats.num_items) |
|
|
|
|
|
if cache_file is not None and opts.rank == 0: |
|
os.makedirs(os.path.dirname(cache_file), exist_ok=True) |
|
temp_file = cache_file + '.' + uuid.uuid4().hex |
|
stats.save(temp_file) |
|
os.replace(temp_file, cache_file) |
|
return stats |
|
|
|
|
|
|
|
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, **stats_kwargs): |
|
if batch_gen is None: |
|
batch_gen = min(batch_size, 4) |
|
assert batch_size % batch_gen == 0 |
|
|
|
|
|
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device) |
|
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) |
|
|
|
|
|
def run_generator(z, c): |
|
img = G(z=z, c=c, **opts.G_kwargs) |
|
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
return img |
|
|
|
|
|
if jit: |
|
z = torch.zeros([batch_gen, G.z_dim], device=opts.device) |
|
c = torch.zeros([batch_gen, G.c_dim], device=opts.device) |
|
run_generator = torch.jit.trace(run_generator, [z, c], check_trace=False) |
|
|
|
|
|
stats = FeatureStats(**stats_kwargs) |
|
assert stats.max_items is not None |
|
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi) |
|
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose) |
|
|
|
|
|
while not stats.is_full(): |
|
images = [] |
|
for _i in range(batch_size // batch_gen): |
|
z = torch.randn([batch_gen, G.z_dim], device=opts.device) |
|
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_gen)] |
|
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) |
|
images.append(run_generator(z, c)) |
|
images = torch.cat(images) |
|
if images.shape[1] == 1: |
|
images = images.repeat([1, 3, 1, 1]) |
|
features = detector(images, **detector_kwargs) |
|
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank) |
|
progress.update(stats.num_items) |
|
return stats |
|
|
|
|
|
|