|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Perceptual Path Length (PPL) from the paper "A Style-Based Generator |
|
Architecture for Generative Adversarial Networks". Matches the original |
|
implementation by Karras et al. at |
|
https://github.com/NVlabs/stylegan/blob/master/metrics/perceptual_path_length.py""" |
|
|
|
import copy |
|
import numpy as np |
|
import torch |
|
import dnnlib |
|
from . import metric_utils |
|
|
|
|
|
|
|
|
|
def slerp(a, b, t): |
|
a = a / a.norm(dim=-1, keepdim=True) |
|
b = b / b.norm(dim=-1, keepdim=True) |
|
d = (a * b).sum(dim=-1, keepdim=True) |
|
p = t * torch.acos(d) |
|
c = b - d * a |
|
c = c / c.norm(dim=-1, keepdim=True) |
|
d = a * torch.cos(p) + c * torch.sin(p) |
|
d = d / d.norm(dim=-1, keepdim=True) |
|
return d |
|
|
|
|
|
|
|
class PPLSampler(torch.nn.Module): |
|
def __init__(self, G, G_kwargs, epsilon, space, sampling, crop, vgg16): |
|
assert space in ['z', 'w'] |
|
assert sampling in ['full', 'end'] |
|
super().__init__() |
|
self.G = copy.deepcopy(G) |
|
self.G_kwargs = G_kwargs |
|
self.epsilon = epsilon |
|
self.space = space |
|
self.sampling = sampling |
|
self.crop = crop |
|
self.vgg16 = copy.deepcopy(vgg16) |
|
|
|
def forward(self, c): |
|
|
|
t = torch.rand([c.shape[0]], device=c.device) * (1 if self.sampling == 'full' else 0) |
|
z0, z1 = torch.randn([c.shape[0] * 2, self.G.z_dim], device=c.device).chunk(2) |
|
|
|
|
|
if self.space == 'w': |
|
w0, w1 = self.G.mapping(z=torch.cat([z0,z1]), c=torch.cat([c,c])).chunk(2) |
|
wt0 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2)) |
|
wt1 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2) + self.epsilon) |
|
else: |
|
zt0 = slerp(z0, z1, t.unsqueeze(1)) |
|
zt1 = slerp(z0, z1, t.unsqueeze(1) + self.epsilon) |
|
wt0, wt1 = self.G.mapping(z=torch.cat([zt0,zt1]), c=torch.cat([c,c])).chunk(2) |
|
|
|
|
|
for name, buf in self.G.named_buffers(): |
|
if name.endswith('.noise_const'): |
|
buf.copy_(torch.randn_like(buf)) |
|
|
|
|
|
img = self.G.synthesis(ws=torch.cat([wt0,wt1]), noise_mode='const', force_fp32=True, **self.G_kwargs) |
|
|
|
|
|
if self.crop: |
|
assert img.shape[2] == img.shape[3] |
|
c = img.shape[2] // 8 |
|
img = img[:, :, c*3 : c*7, c*2 : c*6] |
|
|
|
|
|
factor = self.G.img_resolution // 256 |
|
if factor > 1: |
|
img = img.reshape([-1, img.shape[1], img.shape[2] // factor, factor, img.shape[3] // factor, factor]).mean([3, 5]) |
|
|
|
|
|
img = (img + 1) * (255 / 2) |
|
if self.G.img_channels == 1: |
|
img = img.repeat([1, 3, 1, 1]) |
|
|
|
|
|
lpips_t0, lpips_t1 = self.vgg16(img, resize_images=False, return_lpips=True).chunk(2) |
|
dist = (lpips_t0 - lpips_t1).square().sum(1) / self.epsilon ** 2 |
|
return dist |
|
|
|
|
|
|
|
def compute_ppl(opts, num_samples, epsilon, space, sampling, crop, batch_size, jit=False): |
|
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) |
|
vgg16_url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt' |
|
vgg16 = metric_utils.get_feature_detector(vgg16_url, num_gpus=opts.num_gpus, rank=opts.rank, verbose=opts.progress.verbose) |
|
|
|
|
|
sampler = PPLSampler(G=opts.G, G_kwargs=opts.G_kwargs, epsilon=epsilon, space=space, sampling=sampling, crop=crop, vgg16=vgg16) |
|
sampler.eval().requires_grad_(False).to(opts.device) |
|
if jit: |
|
c = torch.zeros([batch_size, opts.G.c_dim], device=opts.device) |
|
sampler = torch.jit.trace(sampler, [c], check_trace=False) |
|
|
|
|
|
dist = [] |
|
progress = opts.progress.sub(tag='ppl sampling', num_items=num_samples) |
|
for batch_start in range(0, num_samples, batch_size * opts.num_gpus): |
|
progress.update(batch_start) |
|
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_size)] |
|
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) |
|
x = sampler(c) |
|
for src in range(opts.num_gpus): |
|
y = x.clone() |
|
if opts.num_gpus > 1: |
|
torch.distributed.broadcast(y, src=src) |
|
dist.append(y) |
|
progress.update(num_samples) |
|
|
|
|
|
if opts.rank != 0: |
|
return float('nan') |
|
dist = torch.cat(dist)[:num_samples].cpu().numpy() |
|
lo = np.percentile(dist, 1, interpolation='lower') |
|
hi = np.percentile(dist, 99, interpolation='higher') |
|
ppl = np.extract(np.logical_and(dist >= lo, dist <= hi), dist).mean() |
|
return float(ppl) |
|
|
|
|
|
|