Spaces:
Running
Running
File size: 17,537 Bytes
615e9f1 b76c717 615e9f1 b76c717 9134c9f 615e9f1 a60e278 615e9f1 b76c717 615e9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
from azure.ai.vision.imageanalysis import ImageAnalysisClient
from azure.ai.vision.imageanalysis.models import VisualFeatures
from azure.core.credentials import AzureKeyCredential
import time
import numpy as np
import networkx as nx
from modules.utils import class_dict, proportion_inside
import json
from modules.utils import rescale_boxes as rescale
import streamlit as st
from modules.utils import is_vertical
VISION_KEY = os.getenv("VISION_KEY")
VISION_ENDPOINT = os.getenv("VISION_ENDPOINT")
#If local execution
"""with open("VISION_KEY.json", "r") as json_file:
json_data = json.load(json_file)
VISION_KEY = json_data["VISION_KEY"]
VISION_ENDPOINT = json_data["VISION_ENDPOINT"]"""
def sample_ocr_image_file(image_data):
# Set the values of your computer vision endpoint and computer vision key
# as environment variables:
try:
endpoint = VISION_ENDPOINT
key = VISION_KEY
except KeyError:
print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'")
print("Set them before running this sample.")
exit()
# Create an Image Analysis client
client = ImageAnalysisClient(
endpoint=endpoint,
credential=AzureKeyCredential(key)
)
# Extract text (OCR) from an image stream. This will be a synchronously (blocking) call.
result = client.analyze(
image_data=image_data,
visual_features=[VisualFeatures.READ]
)
return result
def text_prediction(image):
#transform the image into a byte array
image.save('temp.jpg')
with open('temp.jpg', 'rb') as f:
image_data = f.read()
ocr_result = sample_ocr_image_file(image_data)
#delete the temporary image
os.remove('temp.jpg')
return ocr_result
def filter_text(ocr_result, threshold=0.5):
words_to_cancel = {"+",".",",","#","@","!","?","(",")","[","]","{","}","<",">","/","\\","|","-","_","=","&","^","%","$","£","€","¥","¢","¤","§","©","®","™","°","±","×","÷","¶","∆","∏","∑","∞","√","∫","≈","≠","≤","≥","≡","∼"}
# Add every other one-letter word to the list of words to cancel, except 'I' and 'a'
for letter in "bcdefghjklmnopqrstuvwxyz1234567890": # All lowercase letters except 'a'
words_to_cancel.add(letter)
words_to_cancel.add("i")
words_to_cancel.add(letter.upper()) # Add the uppercase version as well
characters_to_cancel = {"+", "<", ">"} # Characters to cancel
list_of_lines = []
for block in ocr_result['readResult']['blocks']:
for line in block['lines']:
line_text = []
x_min, y_min = float('inf'), float('inf')
x_max, y_max = float('-inf'), float('-inf')
for word in line['words']:
if word['text'] in words_to_cancel or any(disallowed_char in word['text'] for disallowed_char in characters_to_cancel):
continue
if word['confidence'] > threshold:
if word['text']:
line_text.append(word['text'])
x = [point['x'] for point in word['boundingPolygon']]
y = [point['y'] for point in word['boundingPolygon']]
x_min = min(x_min, min(x))
y_min = min(y_min, min(y))
x_max = max(x_max, max(x))
y_max = max(y_max, max(y))
if line_text: # If there are valid words in the line
list_of_lines.append({
'text': ' '.join(line_text),
'boundingBox': [x_min,y_min,x_max,y_max]
})
list_text = []
list_bbox = []
for i in range(len(list_of_lines)):
list_text.append(list_of_lines[i]['text'])
for i in range(len(list_of_lines)):
list_bbox.append(list_of_lines[i]['boundingBox'])
list_of_lines = [list_bbox, list_text]
return list_of_lines
def get_box_points(box):
"""Returns all critical points of a box: corners and midpoints of edges."""
xmin, ymin, xmax, ymax = box
return np.array([
[xmin, ymin], # Bottom-left corner
[xmax, ymin], # Bottom-right corner
[xmin, ymax], # Top-left corner
[xmax, ymax], # Top-right corner
[(xmin + xmax) / 2, ymin], # Midpoint of bottom edge
[(xmin + xmax) / 2, ymax], # Midpoint of top edge
[xmin, (ymin + ymax) / 2], # Midpoint of left edge
[xmax, (ymin + ymax) / 2] # Midpoint of right edge
])
def min_distance_between_boxes(box1, box2):
"""Computes the minimum distance between two boxes considering all critical points."""
points1 = get_box_points(box1)
points2 = get_box_points(box2)
min_dist = float('inf')
for point1 in points1:
for point2 in points2:
dist = np.linalg.norm(point1 - point2)
if dist < min_dist:
min_dist = dist
return min_dist
def is_inside(box1, box2):
"""Check if the center of box1 is inside box2."""
x_center = (box1[0] + box1[2]) / 2
y_center = (box1[1] + box1[3]) / 2
return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3]
def are_close(box1, box2, threshold=50):
"""Determines if boxes are close based on their corners and center points."""
corners1 = np.array([
[box1[0], box1[1]], [box1[0], box1[3]], [box1[2], box1[1]], [box1[2], box1[3]],
[(box1[0]+box1[2])/2, box1[1]], [(box1[0]+box1[2])/2, box1[3]],
[box1[0], (box1[1]+box1[3])/2], [box1[2], (box1[1]+box1[3])/2]
])
corners2 = np.array([
[box2[0], box2[1]], [box2[0], box2[3]], [box2[2], box2[1]], [box2[2], box2[3]],
[(box2[0]+box2[2])/2, box2[1]], [(box2[0]+box2[2])/2, box2[3]],
[box2[0], (box2[1]+box2[3])/2], [box2[2], (box2[1]+box2[3])/2]
])
for c1 in corners1:
for c2 in corners2:
if np.linalg.norm(c1 - c2) < threshold:
return True
return False
def find_closest_box(text_box, all_boxes, labels, threshold, iou_threshold=0.5):
"""Find the closest box to the given text box within a specified threshold."""
min_distance = float('inf')
closest_index = None
#check if the text is inside a sequenceFlow
for j in range(len(all_boxes)):
if proportion_inside(text_box, all_boxes[j])>iou_threshold and labels[j] == list(class_dict.values()).index('sequenceFlow'):
return j
for i, box in enumerate(all_boxes):
# Compute the center of both boxes
center_text = np.array([(text_box[0] + text_box[2]) / 2, (text_box[1] + text_box[3]) / 2])
center_box = np.array([(box[0] + box[2]) / 2, (box[1] + box[3]) / 2])
# Calculate Euclidean distance between centers
distance = np.linalg.norm(center_text - center_box)
# Update closest box if this box is nearer
if distance < min_distance:
min_distance = distance
closest_index = i
# Check if the closest box found is within the acceptable threshold
if min_distance < threshold:
return closest_index
return None
def group_texts(task_boxes, text_boxes, texts, min_dist=50, iou_threshold=0.8, percentage_thresh=0.8):
"""Maps text boxes to task boxes and groups texts within each task based on proximity."""
G = nx.Graph()
# Map each text box to the nearest task box
task_to_texts = {i: [] for i in range(len(task_boxes))}
information_texts = [] # texts not inside any task box
text_to_task_mapped = [False] * len(text_boxes)
for idx, text_box in enumerate(text_boxes):
mapped = False
for jdx, task_box in enumerate(task_boxes):
if proportion_inside(text_box, task_box)>iou_threshold:
task_to_texts[jdx].append(idx)
text_to_task_mapped[idx] = True
mapped = True
break
if not mapped:
information_texts.append(idx)
all_grouped_texts = []
sentence_boxes = [] # Store the bounding box for each sentence
# Process texts for each task
for task_texts in task_to_texts.values():
G.clear()
for i in task_texts:
G.add_node(i)
for j in task_texts:
if i != j and are_close(text_boxes[i], text_boxes[j]) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]):
G.add_edge(i, j)
groups = list(nx.connected_components(G))
for group in groups:
group = list(group)
lines = {}
for idx in group:
y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2
found_line = False
for line in lines:
if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2:
lines[line].append(idx)
found_line = True
break
if not found_line:
lines[y_center] = [idx]
sorted_lines = sorted(lines.keys())
grouped_texts = []
min_x = min_y = float('inf')
max_x = max_y = -float('inf')
for line in sorted_lines:
sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0])
line_text = ' '.join(texts[idx] for idx in sorted_indices)
grouped_texts.append(line_text)
for idx in sorted_indices:
box = text_boxes[idx]
min_x = min(min_x-5, box[0]-5)
min_y = min(min_y-5, box[1]-5)
max_x = max(max_x+5, box[2]+5)
max_y = max(max_y+5, box[3]+5)
all_grouped_texts.append(' '.join(grouped_texts))
sentence_boxes.append([min_x, min_y, max_x, max_y])
# Group information texts
G.clear()
info_sentence_boxes = []
for i in information_texts:
G.add_node(i)
for j in information_texts:
if i != j and are_close(text_boxes[i], text_boxes[j], percentage_thresh * min_dist) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]):
G.add_edge(i, j)
info_groups = list(nx.connected_components(G))
information_grouped_texts = []
for group in info_groups:
group = list(group)
lines = {}
for idx in group:
y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2
found_line = False
for line in lines:
if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2:
lines[line].append(idx)
found_line = True
break
if not found_line:
lines[y_center] = [idx]
sorted_lines = sorted(lines.keys())
grouped_texts = []
min_x = min_y = float('inf')
max_x = max_y = -float('inf')
for line in sorted_lines:
sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0])
line_text = ' '.join(texts[idx] for idx in sorted_indices)
grouped_texts.append(line_text)
for idx in sorted_indices:
box = text_boxes[idx]
min_x = min(min_x, box[0])
min_y = min(min_y, box[1])
max_x = max(max_x, box[2])
max_y = max(max_y, box[3])
information_grouped_texts.append(' '.join(grouped_texts))
info_sentence_boxes.append([min_x, min_y, max_x, max_y])
return all_grouped_texts, sentence_boxes, information_grouped_texts, info_sentence_boxes
def mapping_text(full_pred, text_pred, print_sentences=False,percentage_thresh=0.6,scale=1.0, iou_threshold=0.5):
########### REFAIRE CETTE FONCTION ###########
#refaire la fonction pour qu'elle prenne en premier les elements qui sont dans les task et ensuite prendre un seuil de distance pour les autres elements
#ou sinon faire la distance entre les elements et non pas seulement les tasks
# Example usage
boxes = rescale(scale, full_pred['boxes'])
min_dist = 200
labels = full_pred['labels']
avoid = [list(class_dict.values()).index('pool'), list(class_dict.values()).index('lane'), list(class_dict.values()).index('sequenceFlow'), list(class_dict.values()).index('messageFlow'), list(class_dict.values()).index('dataAssociation')]
for i in range(len(boxes)):
box1 = boxes[i]
if labels[i] in avoid:
continue
for j in range(i + 1, len(boxes)):
box2 = boxes[j]
if labels[j] in avoid:
continue
dist = min_distance_between_boxes(box1, box2)
min_dist = min(min_dist, dist)
#print("Minimum distance between boxes:", min_dist)
text_pred[0] = rescale(scale, text_pred[0])
task_boxes = [box for i, box in enumerate(boxes) if full_pred['labels'][i] == list(class_dict.values()).index('task')]
grouped_sentences, sentence_bounding_boxes, info_texts, info_boxes = group_texts(task_boxes, text_pred[0], text_pred[1], min_dist=min_dist)
BPMN_id = set(full_pred['BPMN_id']) # This ensures uniqueness of task names
text_mapping = {id: '' for id in BPMN_id}
if print_sentences:
for sentence, box in zip(grouped_sentences, sentence_bounding_boxes):
print("Task-related Text:", sentence)
print("Bounding Box:", box)
print("Information Texts:", info_texts)
print("Information Bounding Boxes:", info_boxes)
# Map the grouped sentences to the corresponding task
for i in range(len(sentence_bounding_boxes)):
for j in range(len(boxes)):
if proportion_inside(sentence_bounding_boxes[i], boxes[j])>iou_threshold and full_pred['labels'][j] == list(class_dict.values()).index('task'):
text_mapping[full_pred['BPMN_id'][j]]=grouped_sentences[i]
# Map the grouped sentences to the corresponding pool
for i in range(len(info_boxes)):
if is_vertical(info_boxes[i]):
for j in range(len(boxes)):
if proportion_inside(info_boxes[i], boxes[j])>0 and full_pred['labels'][j] == list(class_dict.values()).index('pool'):
print("Text:", info_texts[i], "associate with ", full_pred['BPMN_id'][j])
bpmn_id = full_pred['BPMN_id'][j]
# Append new text or create new entry if not existing
if bpmn_id in text_mapping:
text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between
else:
text_mapping[bpmn_id] = info_texts[i]
info_texts[i] = '' # Clear the text to avoid re-use
# Map the grouped sentences to the corresponding object
for i in range(len(info_boxes)):
if is_vertical(info_boxes[i]):
continue # Skip if the text is vertical
for j in range(len(boxes)):
if info_texts[i] == '':
continue # Skip if there's no text
if (proportion_inside(info_boxes[i], boxes[j])>0 or are_close(info_boxes[i], boxes[j], threshold=percentage_thresh*min_dist)) and (full_pred['labels'][j] == list(class_dict.values()).index('event')
or full_pred['labels'][j] == list(class_dict.values()).index('messageEvent')
or full_pred['labels'][j] == list(class_dict.values()).index('timerEvent')
or full_pred['labels'][j] == list(class_dict.values()).index('dataObject')) :
bpmn_id = full_pred['BPMN_id'][j]
# Append new text or create new entry if not existing
if bpmn_id in text_mapping:
text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between
else:
text_mapping[bpmn_id] = info_texts[i]
info_texts[i] = '' # Clear the text to avoid re-use
# Map the grouped sentences to the corresponding flow
for i in range(len(info_boxes)):
if info_texts[i] == '' or is_vertical(info_boxes[i]):
continue # Skip if there's no text
# Find the closest box within the defined threshold
closest_index = find_closest_box(info_boxes[i], boxes, full_pred['labels'], threshold=4*min_dist)
if closest_index is not None and (full_pred['labels'][closest_index] == list(class_dict.values()).index('sequenceFlow') or full_pred['labels'][closest_index] == list(class_dict.values()).index('messageFlow')):
bpmn_id = full_pred['BPMN_id'][closest_index]
# Append new text or create new entry if not existing
if bpmn_id in text_mapping:
text_mapping[bpmn_id] += " " + info_texts[i] # Append text with a space in between
else:
text_mapping[bpmn_id] = info_texts[i]
info_texts[i] = '' # Clear the text to avoid re-use
if print_sentences:
print("Text Mapping:", text_mapping)
print("Information Texts left:", info_texts)
return text_mapping |