File size: 27,921 Bytes
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import numpy as np
import torch
from utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou
from tqdm import tqdm
from toXML import create_BPMN_id




def non_maximum_suppression(boxes, scores, labels=None, iou_threshold=0.5):
    idxs = np.argsort(scores)  # Sort the boxes according to their scores in ascending order
    selected_boxes = []

    while len(idxs) > 0:
        last = len(idxs) - 1
        i = idxs[last]

        # Skip if the label is a lane
        if labels is not None and class_dict[labels[i]] == 'lane':
            selected_boxes.append(i)
            idxs = np.delete(idxs, last)
            continue

        selected_boxes.append(i)

        # Find the intersection of the box with the rest
        suppress = [last]
        for pos in range(0, last):
            j = idxs[pos]
            if iou(boxes[i], boxes[j]) > iou_threshold:
                suppress.append(pos)

        idxs = np.delete(idxs, suppress)

    # Return only the boxes that were selected
    return selected_boxes


def keypoint_correction(keypoints, boxes, labels, model_dict=arrow_dict, distance_treshold=15):
    for idx, (key1, key2) in enumerate(keypoints):
            if labels[idx] not in [list(model_dict.values()).index('sequenceFlow'),
                        list(model_dict.values()).index('messageFlow'),
                        list(model_dict.values()).index('dataAssociation')]:
                continue
            # Calculate the Euclidean distance between the two keypoints
            distance = np.linalg.norm(key1[:2] - key2[:2])
            if distance < distance_treshold:
                print('Key modified for index:', idx)
                x_new,y_new, x,y = find_other_keypoint(idx, keypoints, boxes)
                keypoints[idx][0][:2] = [x_new,y_new]
                keypoints[idx][1][:2] = [x,y]

    return keypoints


def object_prediction(model, image, score_threshold=0.5, iou_threshold=0.5):
    model.eval()
    with torch.no_grad():
        image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
        predictions = model(image_tensor)

        boxes = predictions[0]['boxes'].cpu().numpy()
        labels = predictions[0]['labels'].cpu().numpy()
        scores = predictions[0]['scores'].cpu().numpy()

        idx = np.where(scores > score_threshold)[0]
        boxes = boxes[idx]
        scores = scores[idx]
        labels = labels[idx]

        selected_boxes = non_maximum_suppression(boxes, scores, labels=labels, iou_threshold=iou_threshold)

        #find orientation of the task by checking the size of all the boxes and delete the one that are not in the same orientation
        vertical = 0
        for i in range(len(labels)):
            if labels[i] != list(object_dict.values()).index('task'):
                continue
            if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]:
                vertical += 1
        horizontal = len(labels) - vertical
        for i in range(len(labels)):
            if labels[i] != list(object_dict.values()).index('task'):
                continue

            if vertical < horizontal:
                if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]:
                    #find the element in the list and remove it
                    if i in selected_boxes:
                        selected_boxes.remove(i)
            elif vertical > horizontal:
                if boxes[i][2]-boxes[i][0] > boxes[i][3]-boxes[i][1]:
                    #find the element in the list and remove it
                    if i in selected_boxes:
                        selected_boxes.remove(i)
            else:
                pass

        boxes = boxes[selected_boxes]
        scores = scores[selected_boxes]
        labels = labels[selected_boxes]

        prediction = {
            'boxes': boxes,
            'scores': scores,
            'labels': labels,
        }

    image = image.permute(1, 2, 0).cpu().numpy()
    image = (image * 255).astype(np.uint8)

    return image, prediction


def arrow_prediction(model, image, score_threshold=0.5, iou_threshold=0.5, distance_treshold=15):
    model.eval()
    with torch.no_grad():
        image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
        predictions = model(image_tensor)

        boxes = predictions[0]['boxes'].cpu().numpy()
        labels = predictions[0]['labels'].cpu().numpy() + (len(object_dict) - 1)
        scores = predictions[0]['scores'].cpu().numpy()
        keypoints = predictions[0]['keypoints'].cpu().numpy()

        idx = np.where(scores > score_threshold)[0]
        boxes = boxes[idx]
        scores = scores[idx]
        labels = labels[idx]
        keypoints = keypoints[idx]

        selected_boxes = non_maximum_suppression(boxes, scores, iou_threshold=iou_threshold)
        boxes = boxes[selected_boxes]
        scores = scores[selected_boxes]
        labels = labels[selected_boxes]
        keypoints = keypoints[selected_boxes]

        keypoints = keypoint_correction(keypoints, boxes, labels, class_dict, distance_treshold=distance_treshold)

        prediction = {
            'boxes': boxes,
            'scores': scores,
            'labels': labels,
            'keypoints': keypoints,
        }

    image = image.permute(1, 2, 0).cpu().numpy()
    image = (image * 255).astype(np.uint8)

    return image, prediction

def mix_predictions(objects_pred, arrow_pred):
    # Initialize the list of lists for keypoints
    object_keypoints = []

    # Number of boxes
    num_boxes = len(objects_pred['boxes'])

    # Iterate over the number of boxes
    for _ in range(num_boxes):
        # Each box has 2 keypoints, both initialized to [0, 0, 0]
        keypoints = [[0, 0, 0], [0, 0, 0]]
        object_keypoints.append(keypoints)

    #concatenate the two predictions
    boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes']))
    labels = np.concatenate((objects_pred['labels'], arrow_pred['labels']))
    scores = np.concatenate((objects_pred['scores'], arrow_pred['scores']))
    keypoints = np.concatenate((object_keypoints, arrow_pred['keypoints']))

    return boxes, labels, scores, keypoints

def regroup_elements_by_pool(boxes, labels, class_dict):
    """
    Regroups elements by the pool they belong to, and creates a single new pool for elements that are not in any existing pool.

    Parameters:
    - boxes (list): List of bounding boxes.
    - labels (list): List of labels corresponding to each bounding box.
    - class_dict (dict): Dictionary mapping class indices to class names.

    Returns:
    - dict: A dictionary where each key is a pool's index and the value is a list of elements within that pool.
    """
    # Initialize a dictionary to hold the elements in each pool
    pool_dict = {}

    # Identify the bounding boxes of the pools
    pool_indices = [i for i, label in enumerate(labels) if (class_dict[label.item()] == 'pool')]
    pool_boxes = [boxes[i] for i in pool_indices]

    if not pool_indices:
        # If no pools or lanes are detected, create a single pool with all elements
        labels = np.append(labels, list(class_dict.values()).index('pool'))
        pool_dict[len(labels)-1] = list(range(len(boxes)))
    else:
        # Initialize each pool index with an empty list
        for pool_index in pool_indices:
            pool_dict[pool_index] = []

        # Initialize a list for elements not in any pool
        elements_not_in_pool = []

        # Iterate over all elements
        for i, box in enumerate(boxes):
            if i in pool_indices or class_dict[labels[i]] == 'messageFlow':
                continue  # Skip pool boxes themselves and messageFlow elements
            assigned_to_pool = False
            for j, pool_box in enumerate(pool_boxes):
                # Check if the element is within the pool's bounding box
                if (box[0] >= pool_box[0] and box[1] >= pool_box[1] and 
                    box[2] <= pool_box[2] and box[3] <= pool_box[3]):
                    pool_index = pool_indices[j]
                    pool_dict[pool_index].append(i)
                    assigned_to_pool = True
                    break
            if not assigned_to_pool:
                if class_dict[labels[i]] != 'messageFlow' and class_dict[labels[i]] != 'lane':
                    elements_not_in_pool.append(i)

        if elements_not_in_pool:
            new_pool_index = max(pool_dict.keys()) + 1
            labels = np.append(labels, list(class_dict.values()).index('pool'))
            pool_dict[new_pool_index] = elements_not_in_pool

    # Separate empty pools
    non_empty_pools = {k: v for k, v in pool_dict.items() if v}
    empty_pools = {k: v for k, v in pool_dict.items() if not v}

    # Merge non-empty pools followed by empty pools
    pool_dict = {**non_empty_pools, **empty_pools}

    return pool_dict, labels


def create_links(keypoints, boxes, labels, class_dict):
    best_points = []
    links = []
    for i in range(len(labels)):
        if labels[i]==list(class_dict.values()).index('sequenceFlow') or labels[i]==list(class_dict.values()).index('messageFlow'):
            closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels)
            closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels)
            if closest1 is not None and closest2 is not None:
                best_points.append([point_start, point_end])
                links.append([closest1, closest2])
        else:
            best_points.append([None,None])
            links.append([None,None])

    for i in range(len(labels)):
        if labels[i]==list(class_dict.values()).index('dataAssociation'):
            closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels)
            closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels)
            if closest1 is not None and closest2 is not None:
                best_points[i] = ([point_start, point_end])
                links[i] = ([closest1, closest2])

    return links, best_points

def correction_labels(boxes, labels, class_dict, pool_dict, flow_links):
 
    for pool_index, elements in pool_dict.items():
        print(f"Pool {pool_index} contains elements: {elements}")
        #check if each link is in the same pool
        for i in range(len(flow_links)):
            if labels[i] == list(class_dict.values()).index('sequenceFlow'):
                id1, id2 = flow_links[i]
                if (id1 and id2) is not None:
                    if id1 in elements and id2 in elements:
                        continue
                    elif id1 not in elements and id2 not in elements:
                        continue
                    else:
                        print('change the link from sequenceFlow to messageFlow')
                        labels[i]=list(class_dict.values()).index('messageFlow')

    return labels, flow_links


def last_correction(boxes, labels, scores, keypoints, links, best_points, pool_dict):

    #delete pool that are have only messageFlow on it
    delete_pool = []
    for pool_index, elements in pool_dict.items():
        if all([labels[i] == list(class_dict.values()).index('messageFlow') for i in elements]):
            if len(elements) > 0:
                delete_pool.append(pool_dict[pool_index])
                print(f"Pool {pool_index} contains only messageFlow elements, deleting it")

    #sort index
    delete_pool = sorted(delete_pool, reverse=True)
    for pool in delete_pool:
        index = list(pool_dict.keys())[list(pool_dict.values()).index(pool)]
        del pool_dict[index]


    delete_elements = []
    # Check if there is an arrow that has the same links
    for i in range(len(labels)):
        for j in range(i+1, len(labels)):
            if labels[i] == list(class_dict.values()).index('sequenceFlow') and labels[j] == list(class_dict.values()).index('sequenceFlow'):
                if links[i] == links[j]:
                    print(f'element {i} and {j} have the same links')
                    if scores[i] > scores[j]:
                        print('delete element', j)
                        delete_elements.append(j)
                    else:
                        print('delete element', i)
                        delete_elements.append(i)

    boxes = np.delete(boxes, delete_elements, axis=0)
    labels = np.delete(labels, delete_elements)
    scores = np.delete(scores, delete_elements)
    keypoints = np.delete(keypoints, delete_elements, axis=0)
    links = np.delete(links, delete_elements, axis=0)
    best_points = [point for i, point in enumerate(best_points) if i not in delete_elements]

    #also delete the element in the pool_dict
    for pool_index, elements in pool_dict.items():
        pool_dict[pool_index] = [i for i in elements if i not in delete_elements]

    return boxes, labels, scores, keypoints, links, best_points, pool_dict

def give_link_to_element(links, labels):
    #give a link to event to allow the creation of the BPMN id with start, indermediate and end event
        for i in range(len(links)):
            if labels[i] == list(class_dict.values()).index('sequenceFlow'):
                id1, id2 = links[i]
                if (id1 and id2) is not None:
                        links[id1][1] = i
                        links[id2][0] = i
        return links

def full_prediction(model_object, model_arrow, image, score_threshold=0.5, iou_threshold=0.5, resize=True, distance_treshold=15):
    model_object.eval()  # Set the model to evaluation mode
    model_arrow.eval()  # Set the model to evaluation mode

    # Load an image
    with torch.no_grad():  # Disable gradient calculation for inference
        _, objects_pred = object_prediction(model_object, image, score_threshold=score_threshold, iou_threshold=iou_threshold)
        _, arrow_pred = arrow_prediction(model_arrow, image, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)
        
        #print('Object prediction:', objects_pred)


        boxes, labels, scores, keypoints = mix_predictions(objects_pred, arrow_pred)
    
        # Regroup elements by pool
        pool_dict, labels = regroup_elements_by_pool(boxes,labels, class_dict)
        # Create links between elements
        flow_links, best_points = create_links(keypoints, boxes, labels, class_dict)
        #Correct the labels of some sequenceflow that cross multiple pool
        labels, flow_links = correction_labels(boxes, labels, class_dict, pool_dict, flow_links)
        #give a link to event to allow the creation of the BPMN id with start, indermediate and end event
        flow_links = give_link_to_element(flow_links, labels)
        
        boxes,labels,scores,keypoints,flow_links,best_points,pool_dict = last_correction(boxes,labels,scores,keypoints,flow_links,best_points, pool_dict)            

        image = image.permute(1, 2, 0).cpu().numpy()
        image = (image * 255).astype(np.uint8)
        idx = []
        for i in range(len(labels)):
            idx.append(i) 
        bpmn_id = [class_dict[labels[i]] for i in range(len(labels))]   

        data = {
            'image': image,
            'idx': idx,
            'boxes': boxes,
            'labels': labels,
            'scores': scores,
            'keypoints': keypoints,
            'links': flow_links,
            'best_points': best_points,
            'pool_dict': pool_dict,
            'BPMN_id': bpmn_id,
        }

        # give a unique BPMN id to each element
        data = create_BPMN_id(data)   

        

        return image, data

def evaluate_model_by_class(pred_boxes, true_boxes, pred_labels, true_labels, model_dict, iou_threshold=0.5):
    # Initialize dictionaries to hold per-class counts
    class_tp = {cls: 0 for cls in model_dict.values()}
    class_fp = {cls: 0 for cls in model_dict.values()}
    class_fn = {cls: 0 for cls in model_dict.values()}

    # Track which true boxes have been matched
    matched = [False] * len(true_boxes)

    # Check each prediction against true boxes
    for pred_box, pred_label in zip(pred_boxes, pred_labels):
        match_found = False
        for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
            if not matched[idx] and pred_label == true_label:
                if iou(np.array(pred_box), np.array(true_box)) >= iou_threshold:
                    class_tp[model_dict[pred_label]] += 1
                    matched[idx] = True
                    match_found = True
                    break
        if not match_found:
            class_fp[model_dict[pred_label]] += 1

    # Count false negatives
    for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
        if not matched[idx]:
            class_fn[model_dict[true_label]] += 1

    # Calculate precision, recall, and F1-score per class
    class_precision = {}
    class_recall = {}
    class_f1_score = {}

    for cls in model_dict.values():
        precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0
        recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0
        f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0

        class_precision[cls] = precision
        class_recall[cls] = recall
        class_f1_score[cls] = f1_score

    return class_precision, class_recall, class_f1_score


def keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold=5):
    result = 0
    reverted = False
    #find the position of keypoints in the list
    idx = np.where(pred_boxes == pred_box)[0][0]
    idx2 = np.where(true_boxes == true_box)[0][0]

    keypoint1_pred = pred_keypoints[idx][0]
    keypoint1_true = true_keypoints[idx2][0]
    keypoint2_pred = pred_keypoints[idx][1]
    keypoint2_true = true_keypoints[idx2][1]

    distance1 = np.linalg.norm(keypoint1_pred[:2] - keypoint1_true[:2])
    distance2 = np.linalg.norm(keypoint2_pred[:2] - keypoint2_true[:2])
    distance3 = np.linalg.norm(keypoint1_pred[:2] - keypoint2_true[:2])
    distance4 = np.linalg.norm(keypoint2_pred[:2] - keypoint1_true[:2])

    if distance1 < distance_threshold:
        result += 1
    if distance2 < distance_threshold:
        result += 1
    if distance3 < distance_threshold or distance4 < distance_threshold:
        reverted = True

    return result, reverted

def evaluate_single_image(pred_boxes, true_boxes, pred_labels, true_labels, pred_keypoints, true_keypoints, iou_threshold=0.5, distance_threshold=5):
    tp, fp, fn = 0, 0, 0
    key_t, key_f = 0, 0
    labels_t, labels_f = 0, 0
    reverted_tot = 0

    matched_true_boxes = set()
    for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
        match_found = False
        for true_idx, true_box in enumerate(true_boxes):
            if true_idx in matched_true_boxes:
                continue
            iou_val = iou(pred_box, true_box)
            if iou_val >= iou_threshold:
                if true_keypoints is not None and pred_keypoints is not None:
                    key_result, reverted = keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold)
                    key_t += key_result
                    key_f += 2 - key_result
                    if reverted:
                        reverted_tot += 1
            
                match_found = True
                matched_true_boxes.add(true_idx)
                if pred_label == true_labels[true_idx]:
                    labels_t += 1
                else:
                    labels_f += 1
                tp += 1
                break
        if not match_found:
            fp += 1

    fn = len(true_boxes) - tp

    return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted_tot


def pred_4_evaluation(model, loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type='object'):
    model.eval()
    tp, fp, fn = 0, 0, 0
    labels_t, labels_f = 0, 0
    key_t, key_f = 0, 0
    reverted = 0

    with torch.no_grad():
        for images, targets_im in tqdm(loader, desc="Testing... "):  # Wrap the loader with tqdm
            devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
            images = [image.to(devices) for image in images]
            targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im]

            predictions = model(images)

            for target, prediction in zip(targets, predictions):
                true_boxes = target['boxes'].cpu().numpy()
                true_labels = target['labels'].cpu().numpy()
                if 'keypoints' in target:
                    true_keypoints = target['keypoints'].cpu().numpy()

                pred_boxes = prediction['boxes'].cpu().numpy()
                scores = prediction['scores'].cpu().numpy()
                pred_labels = prediction['labels'].cpu().numpy()
                if 'keypoints' in prediction:
                    pred_keypoints = prediction['keypoints'].cpu().numpy()

                selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold)
                pred_boxes = pred_boxes[selected_boxes]
                scores = scores[selected_boxes]
                pred_labels = pred_labels[selected_boxes]
                if 'keypoints' in prediction:
                    pred_keypoints = pred_keypoints[selected_boxes]

                filtered_boxes = []
                filtered_labels = []
                filtered_keypoints = []
                if 'keypoints' not in prediction:
                    #create a list of zeros of length equal to the number of boxes
                    pred_keypoints = [np.zeros((2, 3)) for _ in range(len(pred_boxes))]

                for box, score, label, keypoints in zip(pred_boxes, scores, pred_labels, pred_keypoints):
                    if score >= score_threshold:
                        filtered_boxes.append(box)
                        filtered_labels.append(label)
                        if 'keypoints' in prediction:
                            filtered_keypoints.append(keypoints)

                if key_correction and ('keypoints' in prediction):
                    filtered_keypoints = keypoint_correction(filtered_keypoints, filtered_boxes, filtered_labels)

                if 'keypoints' not in target:
                    filtered_keypoints = None
                    true_keypoints = None
                tp_img, fp_img, fn_img, labels_t_img, labels_f_img, key_t_img, key_f_img, reverted_img = evaluate_single_image(
                    filtered_boxes, true_boxes, filtered_labels, true_labels, filtered_keypoints, true_keypoints, iou_threshold, distance_threshold)

                tp += tp_img
                fp += fp_img
                fn += fn_img
                labels_t += labels_t_img
                labels_f += labels_f_img
                key_t += key_t_img
                key_f += key_f_img
                reverted += reverted_img

    return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted

def main_evaluation(model, test_loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type = 'object'):

    tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted = pred_4_evaluation(model, test_loader, score_threshold, iou_threshold, distance_threshold, key_correction, model_type)

    labels_precision = labels_t / (labels_t + labels_f) if (labels_t + labels_f) > 0 else 0
    precision = tp / (tp + fp) if (tp + fp) > 0 else 0
    recall = tp / (tp + fn) if (tp + fn) > 0 else 0
    f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
    if model_type == 'arrow':
        key_accuracy = key_t / (key_t + key_f) if (key_t + key_f) > 0 else 0
        reverted_accuracy = reverted / (key_t + key_f) if (key_t + key_f) > 0 else 0
    else:
        key_accuracy = 0
        reverted_accuracy = 0

    return labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy



def evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold=0.5):
    matched_true_boxes = set()
    for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
        match_found = False
        for true_idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
            if true_idx in matched_true_boxes:
                continue
            if pred_label == true_label and iou(np.array(pred_box), np.array(true_box)) >= iou_threshold:
                class_tp[model_dict[pred_label]] += 1
                matched_true_boxes.add(true_idx)
                match_found = True
                break
        if not match_found:
            class_fp[model_dict[pred_label]] += 1

    for idx, true_label in enumerate(true_labels):
        if idx not in matched_true_boxes:
            class_fn[model_dict[true_label]] += 1

def pred_4_evaluation_per_class(model, loader, score_threshold=0.5, iou_threshold=0.5):
    model.eval()
    with torch.no_grad():
        for images, targets_im in tqdm(loader, desc="Testing... "):
            devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
            images = [image.to(devices) for image in images]
            targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im]

            predictions = model(images)

            for target, prediction in zip(targets, predictions):
                true_boxes = target['boxes'].cpu().numpy()
                true_labels = target['labels'].cpu().numpy()

                pred_boxes = prediction['boxes'].cpu().numpy()
                scores = prediction['scores'].cpu().numpy()
                pred_labels = prediction['labels'].cpu().numpy()

                idx = np.where(scores > score_threshold)[0]
                pred_boxes = pred_boxes[idx]
                scores = scores[idx]
                pred_labels = pred_labels[idx]

                selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold)
                pred_boxes = pred_boxes[selected_boxes]
                scores = scores[selected_boxes]
                pred_labels = pred_labels[selected_boxes]

                yield pred_boxes, true_boxes, pred_labels, true_labels

def evaluate_model_by_class(model, test_loader, model_dict, score_threshold=0.5, iou_threshold=0.5):
    class_tp = {cls: 0 for cls in model_dict.values()}
    class_fp = {cls: 0 for cls in model_dict.values()}
    class_fn = {cls: 0 for cls in model_dict.values()}

    for pred_boxes, true_boxes, pred_labels, true_labels in pred_4_evaluation_per_class(model, test_loader, score_threshold, iou_threshold):
        evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold)

    class_precision = {}
    class_recall = {}
    class_f1_score = {}

    for cls in model_dict.values():
        precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0
        recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0
        f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0

        class_precision[cls] = precision
        class_recall[cls] = recall
        class_f1_score[cls] = f1_score

    return class_precision, class_recall, class_f1_score