Spaces:
Running
Running
File size: 40,192 Bytes
615e9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
from torchvision.models.detection import KeypointRCNN_ResNet50_FPN_Weights
import random
import torch
from torch.utils.data import Dataset
import torchvision.transforms.functional as F
import numpy as np
from torch.utils.data.dataloader import default_collate
import cv2
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Subset, ConcatDataset
from tqdm import tqdm
from torch.optim import SGD
import time
from torch.optim import AdamW
import copy
from torchvision import transforms
object_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
}
arrow_dict = {
0: 'background',
1: 'sequenceFlow',
2: 'dataAssociation',
3: 'messageFlow',
}
class_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
13: 'sequenceFlow',
14: 'dataAssociation',
15: 'messageFlow',
}
def rescale_boxes(scale, boxes):
for i in range(len(boxes)):
boxes[i] = [boxes[i][0]*scale,
boxes[i][1]*scale,
boxes[i][2]*scale,
boxes[i][3]*scale]
return boxes
def iou(box1, box2):
# Calcule l'intersection des deux boîtes englobantes
inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
# Calcule l'union des deux boîtes englobantes
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = box1_area + box2_area - inter_area
return inter_area / union_area
def proportion_inside(box1, box2):
# Calculate the intersection of the two bounding boxes
inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
# Calculate the area of box1
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
# Calculate the proportion of box1 inside box2
if box1_area == 0:
return 0
proportion = inter_area / box1_area
# Ensure the proportion is at most 100%
return min(proportion, 1.0)
def resize_boxes(boxes, original_size, target_size):
"""
Resizes bounding boxes according to a new image size.
Parameters:
- boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4].
- original_size (tuple): The original size of the image as (width, height).
- target_size (tuple): The desired size to resize the image to as (width, height).
Returns:
- np.array: The resized bounding boxes as a numpy array of shape [N, 4].
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
# Calculate the ratios for width and height
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
# Apply the ratios to the bounding boxes
boxes[:, 0] *= width_ratio
boxes[:, 1] *= height_ratio
boxes[:, 2] *= width_ratio
boxes[:, 3] *= height_ratio
return boxes
def resize_keypoints(keypoints: np.ndarray, original_size: tuple, target_size: tuple) -> np.ndarray:
"""
Resize keypoints based on the original and target dimensions of an image.
Parameters:
- keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates.
- original_size (tuple): The width and height of the original image (width, height).
- target_size (tuple): The width and height of the target image (width, height).
Returns:
- np.ndarray: The resized keypoints.
Explanation:
The function calculates the ratio of the target dimensions to the original dimensions.
It then applies these ratios to the x and y coordinates of each keypoint to scale them
appropriately to the target image size.
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
# Calculate the ratios for width and height scaling
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
# Apply the scaling ratios to the x and y coordinates of each keypoint
keypoints[:, 0] *= width_ratio # Scale x coordinates
keypoints[:, 1] *= height_ratio # Scale y coordinates
return keypoints
class RandomCrop:
def __init__(self, new_size=(1333,800),crop_fraction=0.5, min_objects=4):
self.crop_fraction = crop_fraction
self.min_objects = min_objects
self.new_size = new_size
def __call__(self, image, target):
new_w1, new_h1 = self.new_size
w, h = image.size
new_w = int(w * self.crop_fraction)
new_h = int(new_w*new_h1/new_w1)
i=0
for i in range(4):
if new_h >= h:
i += 0.05
new_w = int(w * (self.crop_fraction - i))
new_h = int(new_w*new_h1/new_w1)
if new_h < h:
continue
if new_h >= h:
return image, target
boxes = target["boxes"]
if 'keypoints' in target:
keypoints = target["keypoints"]
else:
keypoints = []
for i in range(len(boxes)):
keypoints.append(torch.zeros((2,3)))
# Attempt to find a suitable crop region
success = False
for _ in range(100): # Max 100 attempts to find a valid crop
top = random.randint(0, h - new_h)
left = random.randint(0, w - new_w)
crop_region = [left, top, left + new_w, top + new_h]
# Check how many objects are fully contained in this region
contained_boxes = []
contained_keypoints = []
for box, kp in zip(boxes, keypoints):
if box[0] >= crop_region[0] and box[1] >= crop_region[1] and box[2] <= crop_region[2] and box[3] <= crop_region[3]:
# Adjust box and keypoints coordinates
new_box = box - torch.tensor([crop_region[0], crop_region[1], crop_region[0], crop_region[1]])
new_kp = kp - torch.tensor([crop_region[0], crop_region[1], 0])
contained_boxes.append(new_box)
contained_keypoints.append(new_kp)
if len(contained_boxes) >= self.min_objects:
success = True
break
if success:
# Perform the actual crop
image = F.crop(image, top, left, new_h, new_w)
target["boxes"] = torch.stack(contained_boxes) if contained_boxes else torch.zeros((0, 4))
if 'keypoints' in target:
target["keypoints"] = torch.stack(contained_keypoints) if contained_keypoints else torch.zeros((0, 2, 4))
return image, target
class RandomFlip:
def __init__(self, h_flip_prob=0.5, v_flip_prob=0.5):
"""
Initializes the RandomFlip with probabilities for flipping.
Parameters:
- h_flip_prob (float): Probability of applying a horizontal flip to the image.
- v_flip_prob (float): Probability of applying a vertical flip to the image.
"""
self.h_flip_prob = h_flip_prob
self.v_flip_prob = v_flip_prob
def __call__(self, image, target):
"""
Applies random horizontal and/or vertical flip to the image and updates target data accordingly.
Parameters:
- image (PIL Image): The image to be flipped.
- target (dict): The target dictionary containing 'boxes' and 'keypoints'.
Returns:
- PIL Image, dict: The flipped image and its updated target dictionary.
"""
if random.random() < self.h_flip_prob:
image = F.hflip(image)
w, _ = image.size # Get the new width of the image after flip for bounding box adjustment
# Adjust bounding boxes for horizontal flip
for i, box in enumerate(target['boxes']):
xmin, ymin, xmax, ymax = box
target['boxes'][i] = torch.tensor([w - xmax, ymin, w - xmin, ymax], dtype=torch.float32)
# Adjust keypoints for horizontal flip
if 'keypoints' in target:
new_keypoints = []
for keypoints_for_object in target['keypoints']:
flipped_keypoints_for_object = []
for kp in keypoints_for_object:
x, y = kp[:2]
new_x = w - x
flipped_keypoints_for_object.append(torch.tensor([new_x, y] + list(kp[2:])))
new_keypoints.append(torch.stack(flipped_keypoints_for_object))
target['keypoints'] = torch.stack(new_keypoints)
if random.random() < self.v_flip_prob:
image = F.vflip(image)
_, h = image.size # Get the new height of the image after flip for bounding box adjustment
# Adjust bounding boxes for vertical flip
for i, box in enumerate(target['boxes']):
xmin, ymin, xmax, ymax = box
target['boxes'][i] = torch.tensor([xmin, h - ymax, xmax, h - ymin], dtype=torch.float32)
# Adjust keypoints for vertical flip
if 'keypoints' in target:
new_keypoints = []
for keypoints_for_object in target['keypoints']:
flipped_keypoints_for_object = []
for kp in keypoints_for_object:
x, y = kp[:2]
new_y = h - y
flipped_keypoints_for_object.append(torch.tensor([x, new_y] + list(kp[2:])))
new_keypoints.append(torch.stack(flipped_keypoints_for_object))
target['keypoints'] = torch.stack(new_keypoints)
return image, target
class RandomRotate:
def __init__(self, max_rotate_deg=20, rotate_proba=0.3):
"""
Initializes the RandomRotate with a maximum rotation angle and probability of rotating.
Parameters:
- max_rotate_deg (int): Maximum degree to rotate the image.
- rotate_proba (float): Probability of applying rotation to the image.
"""
self.max_rotate_deg = max_rotate_deg
self.rotate_proba = rotate_proba
def __call__(self, image, target):
"""
Randomly rotates the image and updates the target data accordingly.
Parameters:
- image (PIL Image): The image to be rotated.
- target (dict): The target dictionary containing 'boxes', 'labels', and 'keypoints'.
Returns:
- PIL Image, dict: The rotated image and its updated target dictionary.
"""
if random.random() < self.rotate_proba:
angle = random.uniform(-self.max_rotate_deg, self.max_rotate_deg)
image = F.rotate(image, angle, expand=False, fill=200)
# Rotate bounding boxes
w, h = image.size
cx, cy = w / 2, h / 2
boxes = target["boxes"]
new_boxes = []
for box in boxes:
new_box = self.rotate_box(box, angle, cx, cy)
new_boxes.append(new_box)
target["boxes"] = torch.stack(new_boxes)
# Rotate keypoints
if 'keypoints' in target:
new_keypoints = []
for keypoints in target["keypoints"]:
new_kp = self.rotate_keypoints(keypoints, angle, cx, cy)
new_keypoints.append(new_kp)
target["keypoints"] = torch.stack(new_keypoints)
return image, target
def rotate_box(self, box, angle, cx, cy):
"""
Rotates a bounding box by a given angle around the center of the image.
"""
x1, y1, x2, y2 = box
corners = torch.tensor([
[x1, y1],
[x2, y1],
[x2, y2],
[x1, y2]
])
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim=1)
M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
corners = torch.matmul(torch.tensor(M, dtype=torch.float32), corners.T).T
x_ = corners[:, 0]
y_ = corners[:, 1]
x_min, x_max = torch.min(x_), torch.max(x_)
y_min, y_max = torch.min(y_), torch.max(y_)
return torch.tensor([x_min, y_min, x_max, y_max], dtype=torch.float32)
def rotate_keypoints(self, keypoints, angle, cx, cy):
"""
Rotates keypoints by a given angle around the center of the image.
"""
new_keypoints = []
for kp in keypoints:
x, y, v = kp
point = torch.tensor([x, y, 1])
M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
new_point = torch.matmul(torch.tensor(M, dtype=torch.float32), point)
new_keypoints.append(torch.tensor([new_point[0], new_point[1], v], dtype=torch.float32))
return torch.stack(new_keypoints)
def rotate_90_box(box, angle, w, h):
x1, y1, x2, y2 = box
if angle == 90:
return torch.tensor([y1,h-x2,y2,h-x1])
elif angle == 270 or angle == -90:
return torch.tensor([w-y2,x1,w-y1,x2])
else:
print("angle not supported")
def rotate_90_keypoints(kp, angle, w, h):
# Extract coordinates and visibility from each keypoint tensor
x1, y1, v1 = kp[0][0], kp[0][1], kp[0][2]
x2, y2, v2 = kp[1][0], kp[1][1], kp[1][2]
# Swap x and y coordinates for each keypoint
if angle == 90:
new = [[y1, h-x1, v1], [y2, h-x2, v2]]
elif angle == 270 or angle == -90:
new = [[w-y1, x1, v1], [w-y2, x2, v2]]
return torch.tensor(new, dtype=torch.float32)
def rotate_vertical(image, target):
# Rotate the image and target if the image is vertical
new_boxes = []
angle = random.choice([-90,90])
image = F.rotate(image, angle, expand=True, fill=200)
for box in target["boxes"]:
new_box = rotate_90_box(box, angle, image.size[0], image.size[1])
new_boxes.append(new_box)
target["boxes"] = torch.stack(new_boxes)
if 'keypoints' in target:
new_kp = []
for kp in target['keypoints']:
new_key = rotate_90_keypoints(kp, angle, image.size[0], image.size[1])
new_kp.append(new_key)
target['keypoints'] = torch.stack(new_kp)
return image, target
class BPMN_Dataset(Dataset):
def __init__(self, annotations, transform=None, crop_transform=None, crop_prob=0.3, rotate_90_proba=0.2, flip_transform=None, rotate_transform=None, new_size=(1333,800),keep_ratio=False,resize=True, model_type='object', rotate_vertical=False):
self.annotations = annotations
print(f"Loaded {len(self.annotations)} annotations.")
self.transform = transform
self.crop_transform = crop_transform
self.crop_prob = crop_prob
self.flip_transform = flip_transform
self.rotate_transform = rotate_transform
self.resize = resize
self.rotate_vertical = rotate_vertical
self.new_size = new_size
self.keep_ratio = keep_ratio
self.model_type = model_type
if model_type == 'object':
self.dict = object_dict
elif model_type == 'arrow':
self.dict = arrow_dict
self.rotate_90_proba = rotate_90_proba
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
annotation = self.annotations[idx]
image = annotation.img.convert("RGB")
boxes = torch.tensor(np.array(annotation.boxes_ltrb), dtype=torch.float32)
labels_names = [ann for ann in annotation.categories]
#only keep the labels, boxes and keypoints that are in the class_dict
kept_indices = [i for i, ann in enumerate(annotation.categories) if ann in self.dict.values()]
boxes = boxes[kept_indices]
labels_names = [ann for i, ann in enumerate(labels_names) if i in kept_indices]
labels_id = torch.tensor([(list(self.dict.values()).index(ann)) for ann in labels_names], dtype=torch.int64)
# Initialize keypoints tensor
max_keypoints = 2
keypoints = torch.zeros((len(labels_id), max_keypoints, 3), dtype=torch.float32)
ii=0
for i, ann in enumerate(annotation.annotations):
#only keep the keypoints that are in the kept indices
if i not in kept_indices:
continue
if ann.category in ["sequenceFlow", "messageFlow", "dataAssociation"]:
# Fill the keypoints tensor for this annotation, mark as visible (1)
kp = np.array(ann.keypoints, dtype=np.float32).reshape(-1, 3)
kp = kp[:,:2]
visible = np.ones((kp.shape[0], 1), dtype=np.float32)
kp = np.hstack([kp, visible])
keypoints[ii, :kp.shape[0], :] = torch.tensor(kp, dtype=torch.float32)
ii += 1
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
if self.model_type == 'object':
target = {
"boxes": boxes,
"labels": labels_id,
#"area": area,
#"keypoints": keypoints,
}
elif self.model_type == 'arrow':
target = {
"boxes": boxes,
"labels": labels_id,
#"area": area,
"keypoints": keypoints,
}
# Randomly apply flip transform
if self.flip_transform:
image, target = self.flip_transform(image, target)
# Randomly apply rotate transform
if self.rotate_transform:
image, target = self.rotate_transform(image, target)
# Randomly apply the custom cropping transform
if self.crop_transform and random.random() < self.crop_prob:
image, target = self.crop_transform(image, target)
# Rotate vertical image
if self.rotate_vertical and random.random() < self.rotate_90_proba:
image, target = rotate_vertical(image, target)
if self.resize:
if self.keep_ratio:
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(self.new_size[0] / original_size[0], self.new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
target['boxes'] = resize_boxes(target['boxes'], (image.size[0],image.size[1]), (new_scaled_size))
if 'area' in target:
target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])
if 'keypoints' in target:
for i in range(len(target['keypoints'])):
target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0],image.size[1]), (new_scaled_size))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
# Pad the resized image to make it exactly the desired size
padding = [0, 0, self.new_size[0] - new_scaled_size[0], self.new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='constant')
else:
target['boxes'] = resize_boxes(target['boxes'], (image.size[0],image.size[1]), self.new_size)
if 'area' in target:
target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])
if 'keypoints' in target:
for i in range(len(target['keypoints'])):
target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0],image.size[1]), self.new_size)
image = F.resize(image, (self.new_size[1], self.new_size[0]))
return self.transform(image), target
def collate_fn(batch):
"""
Custom collation function for DataLoader that handles batches of images and targets.
This function ensures that images are properly batched together using PyTorch's default collation,
while keeping the targets (such as bounding boxes and labels) in a list of dictionaries,
as each image might have a different number of objects detected.
Parameters:
- batch (list): A list of tuples, where each tuple contains an image and its corresponding target dictionary.
Returns:
- Tuple containing:
- Tensor: Batched images.
- List of dicts: Targets corresponding to each image in the batch.
"""
images, targets = zip(*batch) # Unzip the batch into separate lists for images and targets.
# Batch images using the default collate function which handles tensors, numpy arrays, numbers, etc.
images = default_collate(images)
return images, targets
def create_loader(new_size,transformation, annotations1, annotations2=None,
batch_size=4, crop_prob=0.2, crop_fraction=0.7, min_objects=3,
h_flip_prob=0.3, v_flip_prob=0.3, max_rotate_deg=20, rotate_90_proba=0.2, rotate_proba=0.3,
seed=42, resize=True, rotate_vertical=False, keep_ratio=False, model_type = 'object'):
"""
Creates a DataLoader for BPMN datasets with optional transformations and concatenation of two datasets.
Parameters:
- transformation (callable): Transformation function to apply to each image (e.g., normalization).
- annotations1 (list): Primary list of annotations.
- annotations2 (list, optional): Secondary list of annotations to concatenate with the first.
- batch_size (int): Number of images per batch.
- crop_prob (float): Probability of applying the crop transformation.
- crop_fraction (float): Fraction of the original width to use when cropping.
- min_objects (int): Minimum number of objects required to be within the crop.
- h_flip_prob (float): Probability of applying horizontal flip.
- v_flip_prob (float): Probability of applying vertical flip.
- seed (int): Seed for random number generators for reproducibility.
- resize (bool): Flag indicating whether to resize images after transformations.
Returns:
- DataLoader: Configured data loader for the dataset.
"""
# Initialize custom transformations for cropping and flipping
custom_crop_transform = RandomCrop(new_size,crop_fraction, min_objects)
custom_flip_transform = RandomFlip(h_flip_prob, v_flip_prob)
custom_rotate_transform = RandomRotate(max_rotate_deg, rotate_proba)
# Create the primary dataset
dataset = BPMN_Dataset(
annotations=annotations1,
transform=transformation,
crop_transform=custom_crop_transform,
crop_prob=crop_prob,
rotate_90_proba=rotate_90_proba,
flip_transform=custom_flip_transform,
rotate_transform=custom_rotate_transform,
rotate_vertical=rotate_vertical,
new_size=new_size,
keep_ratio=keep_ratio,
model_type=model_type,
resize=resize
)
# Optionally concatenate a second dataset
if annotations2:
dataset2 = BPMN_Dataset(
annotations=annotations2,
transform=transformation,
crop_transform=custom_crop_transform,
crop_prob=crop_prob,
rotate_90_proba=rotate_90_proba,
flip_transform=custom_flip_transform,
rotate_vertical=rotate_vertical,
new_size=new_size,
keep_ratio=keep_ratio,
model_type=model_type,
resize=resize
)
dataset = ConcatDataset([dataset, dataset2]) # Concatenate the two datasets
# Set the seed for reproducibility in random operations within transformations and data loading
random.seed(seed)
torch.manual_seed(seed)
# Create the DataLoader with the dataset
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
return data_loader
def write_results(name_model,metrics_list,start_epoch):
with open('./results/'+ name_model+ '.txt', 'w') as f:
for i in range(len(metrics_list[0])):
f.write(f"{i+1+start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n")
def find_other_keypoint(idx, keypoints, boxes):
box = boxes[idx]
key1,key2 = keypoints[idx]
x1, y1, x2, y2 = box
center = ((x1 + x2) // 2, (y1 + y2) // 2)
average_keypoint = (key1 + key2) // 2
#find the opposite keypoint to the center
if average_keypoint[0] < center[0]:
x = center[0] + abs(center[0] - average_keypoint[0])
else:
x = center[0] - abs(center[0] - average_keypoint[0])
if average_keypoint[1] < center[1]:
y = center[1] + abs(center[1] - average_keypoint[1])
else:
y = center[1] - abs(center[1] - average_keypoint[1])
return x, y, average_keypoint[0], average_keypoint[1]
def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5):
"""
Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores.
Parameters:
- boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max].
- scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection.
- labels (np.ndarray): Array of labels corresponding to each box.
- keypoints (np.ndarray): Array of keypoints associated with each box.
- iou_threshold (float): Threshold for IoU above which a box is considered overlapping.
Returns:
- tuple: Filtered boxes, scores, labels, and keypoints.
"""
# Calculate the area of each bounding box to use in IoU calculation.
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Sort the indices of the boxes based on their scores in descending order.
order = scores.argsort()[::-1]
keep = [] # List to store indices of boxes to keep.
while order.size > 0:
# Take the first index (highest score) from the sorted list.
i = order[0]
keep.append(i) # Add this index to 'keep' list.
# Compute the coordinates of the intersection rectangle.
xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0])
yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1])
xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2])
yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3])
# Compute the area of the intersection rectangle.
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
# Calculate IoU and find boxes with IoU less than the threshold to keep.
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou <= iou_threshold)[0]
# Update the list of box indices to consider in the next iteration.
order = order[inds + 1] # Skip the first element since it's already included in 'keep'.
# Use the indices in 'keep' to select the boxes, scores, labels, and keypoints to return.
boxes = boxes[keep]
scores = scores[keep]
labels = labels[keep]
keypoints = keypoints[keep]
return boxes, scores, labels, keypoints
def draw_annotations(image,
target=None,
prediction=None,
full_prediction=None,
text_predictions=None,
model_dict=class_dict,
draw_keypoints=False,
draw_boxes=False,
draw_text=False,
draw_links=False,
draw_twins=False,
write_class=False,
write_score=False,
write_text=False,
write_idx=False,
score_threshold=0.4,
keypoints_correction=False,
only_print=None,
axis=False,
return_image=False,
new_size=(1333,800),
resize=False):
"""
Draws annotations on images including bounding boxes, keypoints, links, and text.
Parameters:
- image (np.array): The image on which annotations will be drawn.
- target (dict): Ground truth data containing boxes, labels, etc.
- prediction (dict): Prediction data from a model.
- full_prediction (dict): Additional detailed prediction data, potentially including relationships.
- text_predictions (tuple): OCR text predictions containing bounding boxes and texts.
- model_dict (dict): Mapping from class IDs to class names.
- draw_keypoints (bool): Flag to draw keypoints.
- draw_boxes (bool): Flag to draw bounding boxes.
- draw_text (bool): Flag to draw text annotations.
- draw_links (bool): Flag to draw links between annotations.
- draw_twins (bool): Flag to draw twins keypoints.
- write_class (bool): Flag to write class names near the annotations.
- write_score (bool): Flag to write scores near the annotations.
- write_text (bool): Flag to write OCR recognized text.
- score_threshold (float): Threshold for scores above which annotations will be drawn.
- only_print (str): Specific class name to filter annotations by.
- resize (bool): Whether to resize annotations to fit the image size.
"""
# Convert image to RGB (if not already in that format)
if prediction is None:
image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_copy = image.copy()
scale = max(image.shape[0], image.shape[1]) / 1000
# Function to draw bounding boxes and keypoints
def draw(data,is_prediction=False):
""" Helper function to draw annotations based on provided data. """
for i in range(len(data['boxes'])):
if is_prediction:
box = data['boxes'][i].tolist()
x1, y1, x2, y2 = box
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
score = data['scores'][i].item()
if score < score_threshold:
continue
else:
box = data['boxes'][i].tolist()
x1, y1, x2, y2 = box
if draw_boxes:
if only_print is not None:
if data['labels'][i] != list(model_dict.values()).index(only_print):
continue
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2*scale))
if is_prediction and write_score:
cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (100,100, 255), 2)
if write_class and 'labels' in data:
class_id = data['labels'][i].item()
cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (255, 100, 100), 2)
if write_idx:
cv2.putText(image_copy, str(i), (int(x1) + int(15*scale), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, 2*scale, (0,0, 0), 2)
# Draw keypoints if available
if draw_keypoints and 'keypoints' in data:
if is_prediction and keypoints_correction:
for idx, (key1, key2) in enumerate(data['keypoints']):
if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
# Calculate the Euclidean distance between the two keypoints
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 5:
x_new,y_new, x,y = find_other_keypoint(idx, data['keypoints'], data['boxes'])
data['keypoints'][idx][0] = torch.tensor([x_new, y_new,1])
data['keypoints'][idx][1] = torch.tensor([x, y,1])
print("keypoint has been changed")
for i in range(len(data['keypoints'])):
kp = data['keypoints'][i]
for j in range(kp.shape[0]):
if is_prediction and data['labels'][i] != list(model_dict.values()).index('sequenceFlow') and data['labels'][i] != list(model_dict.values()).index('messageFlow') and data['labels'][i] != list(model_dict.values()).index('dataAssociation'):
continue
if is_prediction:
score = data['scores'][i]
if score < score_threshold:
continue
x,y,v = np.array(kp[j])
if resize:
x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
if j == 0:
cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (0, 0, 255), -1)
else:
cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (255, 0, 0), -1)
# Draw text predictions if available
if (draw_text or write_text) and text_predictions is not None:
for i in range(len(text_predictions[0])):
x1, y1, x2, y2 = text_predictions[0][i]
text = text_predictions[1][i]
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
if draw_text:
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2*scale))
if write_text:
cv2.putText(image_copy, text, (int(x1 + int(2*scale)), int((y1+y2)/2) ), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (0,0, 0), 2)
def draw_with_links(full_prediction):
'''Draws links between objects based on the full prediction data.'''
#check if keypoints detected are the same
if draw_twins and full_prediction is not None:
# Pre-calculate indices for performance
circle_color = (0, 255, 0) # Green color for the circle
circle_radius = int(10 * scale) # Circle radius scaled by image scale
for idx, (key1, key2) in enumerate(full_prediction['keypoints']):
if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
# Calculate the Euclidean distance between the two keypoints
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 10:
x_new,y_new, x,y = find_other_keypoint(idx,full_prediction)
cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1)
cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0,0,0), -1)
# Draw links between objects
if draw_links==True and full_prediction is not None:
for i, (start_idx, end_idx) in enumerate(full_prediction['links']):
if start_idx is None or end_idx is None:
continue
start_box = full_prediction['boxes'][start_idx]
end_box = full_prediction['boxes'][end_idx]
current_box = full_prediction['boxes'][i]
# Calculate the center of each bounding box
start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2)
end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2)
current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2)
# Draw a line between the centers of the connected objects
cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2*scale))
cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2*scale))
i+=1
# Draw GT annotations
if target is not None:
draw(target, is_prediction=False)
# Draw predictions
if prediction is not None:
#prediction = prediction[0]
draw(prediction, is_prediction=True)
# Draw links with full predictions
if full_prediction is not None:
draw_with_links(full_prediction)
# Display the image
image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(12, 12))
plt.imshow(image_copy)
if axis==False:
plt.axis('off')
plt.show()
if return_image:
return image_copy
def find_closest_object(keypoint, boxes, labels):
"""
Find the closest object to a keypoint based on their proximity.
Parameters:
- keypoint (numpy.ndarray): The coordinates of the keypoint.
- boxes (numpy.ndarray): The bounding boxes of the objects.
Returns:
- int or None: The index of the closest object to the keypoint, or None if no object is found.
"""
min_distance = float('inf')
closest_object_idx = None
# Iterate over each bounding box
for i, box in enumerate(boxes):
if labels[i] in [list(class_dict.values()).index('sequenceFlow'),
list(class_dict.values()).index('messageFlow'),
list(class_dict.values()).index('dataAssociation'),
#list(class_dict.values()).index('pool'),
list(class_dict.values()).index('lane')]:
continue
x1, y1, x2, y2 = box
top = ((x1+x2)/2, y1)
bottom = ((x1+x2)/2, y2)
left = (x1, (y1+y2)/2)
right = (x2, (y1+y2)/2)
points = [left, top , right, bottom]
# Calculate the distance between the keypoint and the center of the bounding box
for point in points:
distance = np.linalg.norm(keypoint[:2] - point)
# Update the closest object index if this object is closer
if distance < min_distance:
min_distance = distance
closest_object_idx = i
best_point = point
return closest_object_idx, best_point
|