File size: 40,192 Bytes
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
from torchvision.models.detection import KeypointRCNN_ResNet50_FPN_Weights
import random
import torch
from torch.utils.data import Dataset
import torchvision.transforms.functional as F
import numpy as np
from torch.utils.data.dataloader import default_collate
import cv2
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Subset, ConcatDataset
from tqdm import tqdm
from torch.optim import SGD
import time
from torch.optim import AdamW
import copy
from torchvision import transforms


object_dict = {
    0: 'background', 
    1: 'task', 
    2: 'exclusiveGateway', 
    3: 'event', 
    4: 'parallelGateway', 
    5: 'messageEvent', 
    6: 'pool', 
    7: 'lane', 
    8: 'dataObject', 
    9: 'dataStore', 
    10: 'subProcess', 
    11: 'eventBasedGateway', 
    12: 'timerEvent',
}

arrow_dict = {
    0: 'background', 
    1: 'sequenceFlow', 
    2: 'dataAssociation', 
    3: 'messageFlow', 
}

class_dict = {
    0: 'background', 
    1: 'task', 
    2: 'exclusiveGateway', 
    3: 'event', 
    4: 'parallelGateway', 
    5: 'messageEvent', 
    6: 'pool', 
    7: 'lane', 
    8: 'dataObject', 
    9: 'dataStore', 
    10: 'subProcess', 
    11: 'eventBasedGateway', 
    12: 'timerEvent',
    13: 'sequenceFlow', 
    14: 'dataAssociation', 
    15: 'messageFlow',
}

def rescale_boxes(scale, boxes):
    for i in range(len(boxes)):
                boxes[i] = [boxes[i][0]*scale,
                            boxes[i][1]*scale,
                            boxes[i][2]*scale,
                            boxes[i][3]*scale]
    return boxes

def iou(box1, box2):
    # Calcule l'intersection des deux boîtes englobantes
    inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
    inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])

    # Calcule l'union des deux boîtes englobantes
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union_area = box1_area + box2_area - inter_area

    return inter_area / union_area

def proportion_inside(box1, box2):
    # Calculate the intersection of the two bounding boxes
    inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
    inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])

    # Calculate the area of box1
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])

    # Calculate the proportion of box1 inside box2
    if box1_area == 0:
        return 0
    proportion = inter_area / box1_area

    # Ensure the proportion is at most 100%
    return min(proportion, 1.0)

def resize_boxes(boxes, original_size, target_size):
    """
    Resizes bounding boxes according to a new image size.

    Parameters:
    - boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4].
    - original_size (tuple): The original size of the image as (width, height).
    - target_size (tuple): The desired size to resize the image to as (width, height).

    Returns:
    - np.array: The resized bounding boxes as a numpy array of shape [N, 4].
    """
    orig_width, orig_height = original_size
    target_width, target_height = target_size

    # Calculate the ratios for width and height
    width_ratio = target_width / orig_width
    height_ratio = target_height / orig_height

    # Apply the ratios to the bounding boxes
    boxes[:, 0] *= width_ratio
    boxes[:, 1] *= height_ratio
    boxes[:, 2] *= width_ratio
    boxes[:, 3] *= height_ratio

    return boxes

def resize_keypoints(keypoints: np.ndarray, original_size: tuple, target_size: tuple) -> np.ndarray:
    """
    Resize keypoints based on the original and target dimensions of an image.

    Parameters:
    - keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates.
    - original_size (tuple): The width and height of the original image (width, height).
    - target_size (tuple): The width and height of the target image (width, height).

    Returns:
    - np.ndarray: The resized keypoints.

    Explanation:
    The function calculates the ratio of the target dimensions to the original dimensions.
    It then applies these ratios to the x and y coordinates of each keypoint to scale them
    appropriately to the target image size.
    """

    orig_width, orig_height = original_size
    target_width, target_height = target_size

    # Calculate the ratios for width and height scaling
    width_ratio = target_width / orig_width
    height_ratio = target_height / orig_height

    # Apply the scaling ratios to the x and y coordinates of each keypoint
    keypoints[:, 0] *= width_ratio  # Scale x coordinates
    keypoints[:, 1] *= height_ratio  # Scale y coordinates

    return keypoints



class RandomCrop:
    def __init__(self, new_size=(1333,800),crop_fraction=0.5, min_objects=4):
        self.crop_fraction = crop_fraction
        self.min_objects = min_objects
        self.new_size = new_size

    def __call__(self, image, target):
        new_w1, new_h1 = self.new_size
        w, h = image.size
        new_w = int(w * self.crop_fraction)
        new_h = int(new_w*new_h1/new_w1)

        i=0
        for i in range(4): 
          if new_h >= h:
            i += 0.05
            new_w = int(w * (self.crop_fraction - i))
            new_h = int(new_w*new_h1/new_w1)
          if new_h < h:
            continue

        if new_h >= h:
          return image, target

        boxes = target["boxes"]
        if 'keypoints' in target:
            keypoints = target["keypoints"]
        else:
            keypoints = []
            for i in range(len(boxes)):
                keypoints.append(torch.zeros((2,3)))
        

        # Attempt to find a suitable crop region
        success = False
        for _ in range(100):  # Max 100 attempts to find a valid crop
            top = random.randint(0, h - new_h)
            left = random.randint(0, w - new_w)
            crop_region = [left, top, left + new_w, top + new_h]

            # Check how many objects are fully contained in this region
            contained_boxes = []
            contained_keypoints = []
            for box, kp in zip(boxes, keypoints):
                if box[0] >= crop_region[0] and box[1] >= crop_region[1] and box[2] <= crop_region[2] and box[3] <= crop_region[3]:
                    # Adjust box and keypoints coordinates
                    new_box = box - torch.tensor([crop_region[0], crop_region[1], crop_region[0], crop_region[1]])
                    new_kp = kp - torch.tensor([crop_region[0], crop_region[1], 0])
                    contained_boxes.append(new_box)
                    contained_keypoints.append(new_kp)

            if len(contained_boxes) >= self.min_objects:
                success = True
                break

        if success:
            # Perform the actual crop
            image = F.crop(image, top, left, new_h, new_w)
            target["boxes"] = torch.stack(contained_boxes) if contained_boxes else torch.zeros((0, 4))
            if 'keypoints' in target:
                target["keypoints"] = torch.stack(contained_keypoints) if contained_keypoints else torch.zeros((0, 2, 4))

        return image, target


class RandomFlip:
    def __init__(self, h_flip_prob=0.5, v_flip_prob=0.5):
        """
        Initializes the RandomFlip with probabilities for flipping.

        Parameters:
        - h_flip_prob (float): Probability of applying a horizontal flip to the image.
        - v_flip_prob (float): Probability of applying a vertical flip to the image.
        """
        self.h_flip_prob = h_flip_prob
        self.v_flip_prob = v_flip_prob

    def __call__(self, image, target):
        """
        Applies random horizontal and/or vertical flip to the image and updates target data accordingly.

        Parameters:
        - image (PIL Image): The image to be flipped.
        - target (dict): The target dictionary containing 'boxes' and 'keypoints'.

        Returns:
        - PIL Image, dict: The flipped image and its updated target dictionary.
        """
        if random.random() < self.h_flip_prob:
            image = F.hflip(image)
            w, _ = image.size  # Get the new width of the image after flip for bounding box adjustment
            # Adjust bounding boxes for horizontal flip
            for i, box in enumerate(target['boxes']):
                xmin, ymin, xmax, ymax = box
                target['boxes'][i] = torch.tensor([w - xmax, ymin, w - xmin, ymax], dtype=torch.float32)

            # Adjust keypoints for horizontal flip
            if 'keypoints' in target:
                new_keypoints = []
                for keypoints_for_object in target['keypoints']:
                    flipped_keypoints_for_object = []
                    for kp in keypoints_for_object:
                        x, y = kp[:2]
                        new_x = w - x
                        flipped_keypoints_for_object.append(torch.tensor([new_x, y] + list(kp[2:])))
                    new_keypoints.append(torch.stack(flipped_keypoints_for_object))
                target['keypoints'] = torch.stack(new_keypoints)

        if random.random() < self.v_flip_prob:
            image = F.vflip(image)
            _, h = image.size  # Get the new height of the image after flip for bounding box adjustment
            # Adjust bounding boxes for vertical flip
            for i, box in enumerate(target['boxes']):
                xmin, ymin, xmax, ymax = box
                target['boxes'][i] = torch.tensor([xmin, h - ymax, xmax, h - ymin], dtype=torch.float32)

            # Adjust keypoints for vertical flip
            if 'keypoints' in target:
                new_keypoints = []
                for keypoints_for_object in target['keypoints']:
                    flipped_keypoints_for_object = []
                    for kp in keypoints_for_object:
                        x, y = kp[:2]
                        new_y = h - y
                        flipped_keypoints_for_object.append(torch.tensor([x, new_y] + list(kp[2:])))
                    new_keypoints.append(torch.stack(flipped_keypoints_for_object))
                target['keypoints'] = torch.stack(new_keypoints)

        return image, target
    

class RandomRotate:
    def __init__(self, max_rotate_deg=20, rotate_proba=0.3):
        """
        Initializes the RandomRotate with a maximum rotation angle and probability of rotating.

        Parameters:
        - max_rotate_deg (int): Maximum degree to rotate the image.
        - rotate_proba (float): Probability of applying rotation to the image.
        """
        self.max_rotate_deg = max_rotate_deg
        self.rotate_proba = rotate_proba

    def __call__(self, image, target):
        """
        Randomly rotates the image and updates the target data accordingly.

        Parameters:
        - image (PIL Image): The image to be rotated.
        - target (dict): The target dictionary containing 'boxes', 'labels', and 'keypoints'.

        Returns:
        - PIL Image, dict: The rotated image and its updated target dictionary.
        """
        if random.random() < self.rotate_proba:
            angle = random.uniform(-self.max_rotate_deg, self.max_rotate_deg)
            image = F.rotate(image, angle, expand=False, fill=200)

            # Rotate bounding boxes
            w, h = image.size
            cx, cy = w / 2, h / 2
            boxes = target["boxes"]
            new_boxes = []
            for box in boxes:
                new_box = self.rotate_box(box, angle, cx, cy)
                new_boxes.append(new_box)
            target["boxes"] = torch.stack(new_boxes)

            # Rotate keypoints
            if 'keypoints' in target:
                new_keypoints = []
                for keypoints in target["keypoints"]:
                    new_kp = self.rotate_keypoints(keypoints, angle, cx, cy)
                    new_keypoints.append(new_kp)
                target["keypoints"] = torch.stack(new_keypoints)

        return image, target

    def rotate_box(self, box, angle, cx, cy):
        """
        Rotates a bounding box by a given angle around the center of the image.
        """
        x1, y1, x2, y2 = box
        corners = torch.tensor([
            [x1, y1],
            [x2, y1],
            [x2, y2],
            [x1, y2]
        ])
        corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim=1)
        M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
        corners = torch.matmul(torch.tensor(M, dtype=torch.float32), corners.T).T
        x_ = corners[:, 0]
        y_ = corners[:, 1]
        x_min, x_max = torch.min(x_), torch.max(x_)
        y_min, y_max = torch.min(y_), torch.max(y_)
        return torch.tensor([x_min, y_min, x_max, y_max], dtype=torch.float32)

    def rotate_keypoints(self, keypoints, angle, cx, cy):
        """
        Rotates keypoints by a given angle around the center of the image.
        """
        new_keypoints = []
        for kp in keypoints:
            x, y, v = kp
            point = torch.tensor([x, y, 1])
            M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
            new_point = torch.matmul(torch.tensor(M, dtype=torch.float32), point)
            new_keypoints.append(torch.tensor([new_point[0], new_point[1], v], dtype=torch.float32))
        return torch.stack(new_keypoints)

def rotate_90_box(box, angle, w, h):
    x1, y1, x2, y2 = box
    if angle == 90:
        return torch.tensor([y1,h-x2,y2,h-x1])
    elif angle == 270 or angle == -90:
        return torch.tensor([w-y2,x1,w-y1,x2])
    else:
        print("angle not supported")

def rotate_90_keypoints(kp, angle, w, h):
    # Extract coordinates and visibility from each keypoint tensor
    x1, y1, v1 = kp[0][0], kp[0][1], kp[0][2]
    x2, y2, v2 = kp[1][0], kp[1][1], kp[1][2]
    # Swap x and y coordinates for each keypoint
    if angle == 90:
        new = [[y1, h-x1, v1], [y2, h-x2, v2]]
    elif angle == 270 or angle == -90:
        new = [[w-y1, x1, v1], [w-y2, x2, v2]]

    return torch.tensor(new, dtype=torch.float32)
    

def rotate_vertical(image, target):
    # Rotate the image and target if the image is vertical
    new_boxes = []
    angle = random.choice([-90,90])
    image = F.rotate(image, angle, expand=True, fill=200)
    for box in target["boxes"]:
        new_box = rotate_90_box(box, angle, image.size[0], image.size[1])
        new_boxes.append(new_box)
    target["boxes"] = torch.stack(new_boxes)
    
    if 'keypoints' in target:
        new_kp = []  
        for kp in target['keypoints']:                   
            new_key = rotate_90_keypoints(kp, angle, image.size[0], image.size[1])
            new_kp.append(new_key)
        target['keypoints'] = torch.stack(new_kp)
    return image, target

class BPMN_Dataset(Dataset):
    def __init__(self, annotations, transform=None, crop_transform=None, crop_prob=0.3, rotate_90_proba=0.2, flip_transform=None, rotate_transform=None, new_size=(1333,800),keep_ratio=False,resize=True, model_type='object', rotate_vertical=False):
        self.annotations = annotations
        print(f"Loaded {len(self.annotations)} annotations.")
        self.transform = transform
        self.crop_transform = crop_transform
        self.crop_prob = crop_prob
        self.flip_transform = flip_transform
        self.rotate_transform = rotate_transform
        self.resize = resize
        self.rotate_vertical = rotate_vertical
        self.new_size = new_size
        self.keep_ratio = keep_ratio
        self.model_type = model_type
        if model_type == 'object':
            self.dict = object_dict
        elif model_type == 'arrow':
            self.dict = arrow_dict
        self.rotate_90_proba = rotate_90_proba

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, idx):
        annotation = self.annotations[idx]
        image = annotation.img.convert("RGB")
        boxes = torch.tensor(np.array(annotation.boxes_ltrb), dtype=torch.float32)
        labels_names = [ann for ann in annotation.categories]

        #only keep the labels, boxes and keypoints that are in the class_dict
        kept_indices = [i for i, ann in enumerate(annotation.categories) if ann in self.dict.values()]
        boxes = boxes[kept_indices]
        labels_names = [ann for i, ann in enumerate(labels_names) if i in kept_indices]

        labels_id = torch.tensor([(list(self.dict.values()).index(ann)) for ann in labels_names], dtype=torch.int64)

        # Initialize keypoints tensor
        max_keypoints = 2
        keypoints = torch.zeros((len(labels_id), max_keypoints, 3), dtype=torch.float32)

        ii=0
        for i, ann in enumerate(annotation.annotations):
            #only keep the keypoints that are in the kept indices
            if i not in kept_indices:
                continue
            if ann.category in ["sequenceFlow", "messageFlow", "dataAssociation"]:
                # Fill the keypoints tensor for this annotation, mark as visible (1)
                kp = np.array(ann.keypoints, dtype=np.float32).reshape(-1, 3)
                kp = kp[:,:2]
                visible = np.ones((kp.shape[0], 1), dtype=np.float32)
                kp = np.hstack([kp, visible])
                keypoints[ii, :kp.shape[0], :] = torch.tensor(kp, dtype=torch.float32)
                ii += 1

        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])

        if self.model_type == 'object':        
            target = {
                "boxes": boxes,
                "labels": labels_id,
                #"area": area,
                #"keypoints": keypoints,
            }
        elif self.model_type == 'arrow':
            target = {
                "boxes": boxes,
                "labels": labels_id,
                #"area": area,
                "keypoints": keypoints,
            }

        # Randomly apply flip transform
        if self.flip_transform:
            image, target = self.flip_transform(image, target)

        # Randomly apply rotate transform
        if self.rotate_transform:
            image, target = self.rotate_transform(image, target)

        # Randomly apply the custom cropping transform
        if self.crop_transform and random.random() < self.crop_prob:
            image, target = self.crop_transform(image, target)
            
        # Rotate vertical image
        if self.rotate_vertical and random.random() < self.rotate_90_proba:
            image, target = rotate_vertical(image, target)

        if self.resize:
            if self.keep_ratio:
                original_size = image.size
                # Calculate scale to fit the new size while maintaining aspect ratio
                scale = min(self.new_size[0] / original_size[0], self.new_size[1] / original_size[1])
                new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))

                target['boxes'] = resize_boxes(target['boxes'], (image.size[0],image.size[1]), (new_scaled_size))
                if 'area' in target:
                    target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])

                if 'keypoints' in target:
                    for i in range(len(target['keypoints'])):
                        target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0],image.size[1]), (new_scaled_size))

                # Resize image to new scaled size
                image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))

                # Pad the resized image to make it exactly the desired size
                padding = [0, 0, self.new_size[0] - new_scaled_size[0], self.new_size[1] - new_scaled_size[1]]
                image = F.pad(image, padding, fill=200, padding_mode='constant')
            else:
                target['boxes'] = resize_boxes(target['boxes'], (image.size[0],image.size[1]), self.new_size)
                if 'area' in target:
                    target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])
                if 'keypoints' in target:
                    for i in range(len(target['keypoints'])):
                        target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0],image.size[1]), self.new_size)
                image = F.resize(image, (self.new_size[1], self.new_size[0]))

        return self.transform(image), target

def collate_fn(batch):
    """
    Custom collation function for DataLoader that handles batches of images and targets.

    This function ensures that images are properly batched together using PyTorch's default collation,
    while keeping the targets (such as bounding boxes and labels) in a list of dictionaries, 
    as each image might have a different number of objects detected.

    Parameters:
    - batch (list): A list of tuples, where each tuple contains an image and its corresponding target dictionary.

    Returns:
    - Tuple containing:
      - Tensor: Batched images.
      - List of dicts: Targets corresponding to each image in the batch.
    """
    images, targets = zip(*batch)  # Unzip the batch into separate lists for images and targets.

    # Batch images using the default collate function which handles tensors, numpy arrays, numbers, etc.
    images = default_collate(images)

    return images, targets



def create_loader(new_size,transformation, annotations1, annotations2=None, 
                  batch_size=4, crop_prob=0.2, crop_fraction=0.7, min_objects=3, 
                  h_flip_prob=0.3, v_flip_prob=0.3, max_rotate_deg=20, rotate_90_proba=0.2, rotate_proba=0.3, 
                  seed=42, resize=True, rotate_vertical=False, keep_ratio=False, model_type = 'object'):
    """
    Creates a DataLoader for BPMN datasets with optional transformations and concatenation of two datasets.

    Parameters:
    - transformation (callable): Transformation function to apply to each image (e.g., normalization).
    - annotations1 (list): Primary list of annotations.
    - annotations2 (list, optional): Secondary list of annotations to concatenate with the first.
    - batch_size (int): Number of images per batch.
    - crop_prob (float): Probability of applying the crop transformation.
    - crop_fraction (float): Fraction of the original width to use when cropping.
    - min_objects (int): Minimum number of objects required to be within the crop.
    - h_flip_prob (float): Probability of applying horizontal flip.
    - v_flip_prob (float): Probability of applying vertical flip.
    - seed (int): Seed for random number generators for reproducibility.
    - resize (bool): Flag indicating whether to resize images after transformations.

    Returns:
    - DataLoader: Configured data loader for the dataset.
    """

    # Initialize custom transformations for cropping and flipping
    custom_crop_transform = RandomCrop(new_size,crop_fraction, min_objects)
    custom_flip_transform = RandomFlip(h_flip_prob, v_flip_prob)
    custom_rotate_transform = RandomRotate(max_rotate_deg, rotate_proba)

    # Create the primary dataset
    dataset = BPMN_Dataset(
        annotations=annotations1,
        transform=transformation,
        crop_transform=custom_crop_transform,
        crop_prob=crop_prob,
        rotate_90_proba=rotate_90_proba,
        flip_transform=custom_flip_transform,
        rotate_transform=custom_rotate_transform,
        rotate_vertical=rotate_vertical,
        new_size=new_size,
        keep_ratio=keep_ratio,
        model_type=model_type,
        resize=resize
    )

    # Optionally concatenate a second dataset
    if annotations2:
        dataset2 = BPMN_Dataset(
            annotations=annotations2,
            transform=transformation,
            crop_transform=custom_crop_transform,
            crop_prob=crop_prob,
            rotate_90_proba=rotate_90_proba,
            flip_transform=custom_flip_transform,
            rotate_vertical=rotate_vertical,
            new_size=new_size,
            keep_ratio=keep_ratio,
            model_type=model_type,
            resize=resize
        )
        dataset = ConcatDataset([dataset, dataset2])  # Concatenate the two datasets

    # Set the seed for reproducibility in random operations within transformations and data loading
    random.seed(seed)
    torch.manual_seed(seed)

    # Create the DataLoader with the dataset
    data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)

    return data_loader



def write_results(name_model,metrics_list,start_epoch):
  with open('./results/'+ name_model+ '.txt', 'w') as f:
        for i in range(len(metrics_list[0])):
          f.write(f"{i+1+start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n")


def find_other_keypoint(idx, keypoints, boxes):
    box = boxes[idx]
    key1,key2 = keypoints[idx]
    x1, y1, x2, y2 = box
    center = ((x1 + x2) // 2, (y1 + y2) // 2)
    average_keypoint = (key1 + key2) // 2
    #find the opposite keypoint to the center
    if average_keypoint[0] < center[0]:
        x = center[0] + abs(center[0] - average_keypoint[0])
    else:
        x = center[0] - abs(center[0] - average_keypoint[0])
    if average_keypoint[1] < center[1]:
        y = center[1] + abs(center[1] - average_keypoint[1])
    else:
        y = center[1] - abs(center[1] - average_keypoint[1])
    return x, y, average_keypoint[0], average_keypoint[1]
    

def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5):
    """
    Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores.

    Parameters:
    - boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max].
    - scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection.
    - labels (np.ndarray): Array of labels corresponding to each box.
    - keypoints (np.ndarray): Array of keypoints associated with each box.
    - iou_threshold (float): Threshold for IoU above which a box is considered overlapping.

    Returns:
    - tuple: Filtered boxes, scores, labels, and keypoints.
    """
    # Calculate the area of each bounding box to use in IoU calculation.
    areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
    
    # Sort the indices of the boxes based on their scores in descending order.
    order = scores.argsort()[::-1]
    
    keep = []  # List to store indices of boxes to keep.
    
    while order.size > 0:
        # Take the first index (highest score) from the sorted list.
        i = order[0]
        keep.append(i)  # Add this index to 'keep' list.
        
        # Compute the coordinates of the intersection rectangle.
        xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0])
        yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1])
        xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2])
        yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3])
        
        # Compute the area of the intersection rectangle.
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        
        # Calculate IoU and find boxes with IoU less than the threshold to keep.
        iou = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(iou <= iou_threshold)[0]
        
        # Update the list of box indices to consider in the next iteration.
        order = order[inds + 1]  # Skip the first element since it's already included in 'keep'.
    
    # Use the indices in 'keep' to select the boxes, scores, labels, and keypoints to return.
    boxes = boxes[keep]
    scores = scores[keep]
    labels = labels[keep]
    keypoints = keypoints[keep]
    
    return boxes, scores, labels, keypoints



def draw_annotations(image, 
                     target=None, 
                     prediction=None, 
                     full_prediction=None,
                     text_predictions=None, 
                     model_dict=class_dict, 
                     draw_keypoints=False, 
                     draw_boxes=False, 
                     draw_text=False,
                     draw_links=False,
                     draw_twins=False,
                     write_class=False,
                     write_score=False, 
                     write_text=False,
                     write_idx=False,
                     score_threshold=0.4, 
                     keypoints_correction=False,
                     only_print=None,
                     axis=False,
                     return_image=False,
                     new_size=(1333,800),
                     resize=False):
    """
    Draws annotations on images including bounding boxes, keypoints, links, and text.
    
    Parameters:
    - image (np.array): The image on which annotations will be drawn.
    - target (dict): Ground truth data containing boxes, labels, etc.
    - prediction (dict): Prediction data from a model.
    - full_prediction (dict): Additional detailed prediction data, potentially including relationships.
    - text_predictions (tuple): OCR text predictions containing bounding boxes and texts.
    - model_dict (dict): Mapping from class IDs to class names.
    - draw_keypoints (bool): Flag to draw keypoints.
    - draw_boxes (bool): Flag to draw bounding boxes.
    - draw_text (bool): Flag to draw text annotations.
    - draw_links (bool): Flag to draw links between annotations.
    - draw_twins (bool): Flag to draw twins keypoints.
    - write_class (bool): Flag to write class names near the annotations.
    - write_score (bool): Flag to write scores near the annotations.
    - write_text (bool): Flag to write OCR recognized text.
    - score_threshold (float): Threshold for scores above which annotations will be drawn.
    - only_print (str): Specific class name to filter annotations by.
    - resize (bool): Whether to resize annotations to fit the image size.
    """

    # Convert image to RGB (if not already in that format)
    if prediction is None:
        image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image_copy = image.copy()
    scale = max(image.shape[0], image.shape[1]) / 1000

    # Function to draw bounding boxes and keypoints
    def draw(data,is_prediction=False):
        """ Helper function to draw annotations based on provided data. """

        for i in range(len(data['boxes'])):
            if is_prediction:
                box = data['boxes'][i].tolist()
                x1, y1, x2, y2 = box
                if resize:
                    x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                score = data['scores'][i].item()
                if score < score_threshold:
                    continue
            else:
                box = data['boxes'][i].tolist()
                x1, y1, x2, y2 = box
            if draw_boxes:
                if only_print is not None:
                    if data['labels'][i] != list(model_dict.values()).index(only_print):
                        continue
                cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2*scale))
            if is_prediction and write_score:
                cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (100,100, 255), 2)

            if write_class and 'labels' in data:
                class_id = data['labels'][i].item()
                cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (255, 100, 100), 2)

            if write_idx:
                cv2.putText(image_copy, str(i), (int(x1) + int(15*scale), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, 2*scale, (0,0, 0), 2)
  

            # Draw keypoints if available
            if draw_keypoints and 'keypoints' in data:
                if is_prediction and keypoints_correction:
                    for idx, (key1, key2) in enumerate(data['keypoints']):
                        if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
                                    list(model_dict.values()).index('messageFlow'),
                                    list(model_dict.values()).index('dataAssociation')]:
                            continue
                        # Calculate the Euclidean distance between the two keypoints
                        distance = np.linalg.norm(key1[:2] - key2[:2])
                
                        if distance < 5:
                            x_new,y_new, x,y = find_other_keypoint(idx, data['keypoints'], data['boxes'])
                            data['keypoints'][idx][0] = torch.tensor([x_new, y_new,1])
                            data['keypoints'][idx][1] = torch.tensor([x, y,1])
                            print("keypoint has been changed")
                for i in range(len(data['keypoints'])):
                    kp = data['keypoints'][i]
                    for j in range(kp.shape[0]):
                        if is_prediction and data['labels'][i] != list(model_dict.values()).index('sequenceFlow') and data['labels'][i] != list(model_dict.values()).index('messageFlow') and data['labels'][i] != list(model_dict.values()).index('dataAssociation'):
                            continue
                        if is_prediction:
                            score = data['scores'][i]
                            if score < score_threshold:
                                continue
                        x,y,v = np.array(kp[j])
                        if resize:
                            x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                        if j == 0:
                            cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (0, 0, 255), -1)
                        else:
                            cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (255, 0, 0), -1)

        # Draw text predictions if available
        if (draw_text or write_text) and text_predictions is not None:                        
            for i in range(len(text_predictions[0])):
                x1, y1, x2, y2 = text_predictions[0][i]
                text = text_predictions[1][i]
                if resize:
                    x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                if draw_text:
                    cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2*scale))
                if write_text:
                    cv2.putText(image_copy, text, (int(x1 + int(2*scale)), int((y1+y2)/2) ), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (0,0, 0), 2)
            
    def draw_with_links(full_prediction):
        '''Draws links between objects based on the full prediction data.'''
        #check if keypoints detected are the same
        if draw_twins and full_prediction is not None:
            # Pre-calculate indices for performance
            circle_color = (0, 255, 0)  # Green color for the circle
            circle_radius = int(10 * scale)  # Circle radius scaled by image scale

            for idx, (key1, key2) in enumerate(full_prediction['keypoints']):
                if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
                         list(model_dict.values()).index('messageFlow'),
                         list(model_dict.values()).index('dataAssociation')]:
                    continue
                # Calculate the Euclidean distance between the two keypoints
                distance = np.linalg.norm(key1[:2] - key2[:2])
                if distance < 10:
                    x_new,y_new, x,y = find_other_keypoint(idx,full_prediction)
                    cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1)
                    cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0,0,0), -1)

        # Draw links between objects
        if draw_links==True and full_prediction is not None:
            for i, (start_idx, end_idx) in enumerate(full_prediction['links']):
                if start_idx is None or end_idx is None:
                    continue
                start_box = full_prediction['boxes'][start_idx]
                end_box = full_prediction['boxes'][end_idx]
                current_box = full_prediction['boxes'][i]
                # Calculate the center of each bounding box
                start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2)
                end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2)
                current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2)
                # Draw a line between the centers of the connected objects
                cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2*scale))
                cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2*scale))

                i+=1

    # Draw GT annotations
    if target is not None:
        draw(target, is_prediction=False)
    # Draw predictions
    if prediction is not None:
        #prediction = prediction[0] 
        draw(prediction, is_prediction=True)
    # Draw links with full predictions
    if full_prediction is not None:
        draw_with_links(full_prediction)

    # Display the image
    image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(12, 12))
    plt.imshow(image_copy)
    if axis==False:
        plt.axis('off')
    plt.show()

    if return_image:
        return image_copy

def find_closest_object(keypoint, boxes, labels):
    """
    Find the closest object to a keypoint based on their proximity.

    Parameters:
    - keypoint (numpy.ndarray): The coordinates of the keypoint.
    - boxes (numpy.ndarray): The bounding boxes of the objects.

    Returns:
    - int or None: The index of the closest object to the keypoint, or None if no object is found.
    """
    min_distance = float('inf')
    closest_object_idx = None
    # Iterate over each bounding box
    for i, box in enumerate(boxes):
        if labels[i] in [list(class_dict.values()).index('sequenceFlow'),
                         list(class_dict.values()).index('messageFlow'),
                         list(class_dict.values()).index('dataAssociation'),
                         #list(class_dict.values()).index('pool'),
                         list(class_dict.values()).index('lane')]:
            continue
        x1, y1, x2, y2 = box

        top = ((x1+x2)/2, y1)
        bottom = ((x1+x2)/2, y2)
        left = (x1, (y1+y2)/2)
        right = (x2, (y1+y2)/2)
        points = [left, top , right, bottom]

        # Calculate the distance between the keypoint and the center of the bounding box
        for point in points:
            distance = np.linalg.norm(keypoint[:2] - point)
            # Update the closest object index if this object is closer
            if distance < min_distance:
                min_distance = distance
                closest_object_idx = i
                best_point = point

    return closest_object_idx, best_point