Spaces:
Running
Running
import numpy as np | |
import torch | |
from utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou | |
from tqdm import tqdm | |
from toXML import create_BPMN_id | |
def non_maximum_suppression(boxes, scores, labels=None, iou_threshold=0.5): | |
idxs = np.argsort(scores) # Sort the boxes according to their scores in ascending order | |
selected_boxes = [] | |
while len(idxs) > 0: | |
last = len(idxs) - 1 | |
i = idxs[last] | |
# Skip if the label is a lane | |
if labels is not None and class_dict[labels[i]] == 'lane': | |
selected_boxes.append(i) | |
idxs = np.delete(idxs, last) | |
continue | |
selected_boxes.append(i) | |
# Find the intersection of the box with the rest | |
suppress = [last] | |
for pos in range(0, last): | |
j = idxs[pos] | |
if iou(boxes[i], boxes[j]) > iou_threshold: | |
suppress.append(pos) | |
idxs = np.delete(idxs, suppress) | |
# Return only the boxes that were selected | |
return selected_boxes | |
def keypoint_correction(keypoints, boxes, labels, model_dict=arrow_dict, distance_treshold=15): | |
for idx, (key1, key2) in enumerate(keypoints): | |
if labels[idx] not in [list(model_dict.values()).index('sequenceFlow'), | |
list(model_dict.values()).index('messageFlow'), | |
list(model_dict.values()).index('dataAssociation')]: | |
continue | |
# Calculate the Euclidean distance between the two keypoints | |
distance = np.linalg.norm(key1[:2] - key2[:2]) | |
if distance < distance_treshold: | |
print('Key modified for index:', idx) | |
x_new,y_new, x,y = find_other_keypoint(idx, keypoints, boxes) | |
keypoints[idx][0][:2] = [x_new,y_new] | |
keypoints[idx][1][:2] = [x,y] | |
return keypoints | |
def object_prediction(model, image, score_threshold=0.5, iou_threshold=0.5): | |
model.eval() | |
with torch.no_grad(): | |
image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) | |
predictions = model(image_tensor) | |
boxes = predictions[0]['boxes'].cpu().numpy() | |
labels = predictions[0]['labels'].cpu().numpy() | |
scores = predictions[0]['scores'].cpu().numpy() | |
idx = np.where(scores > score_threshold)[0] | |
boxes = boxes[idx] | |
scores = scores[idx] | |
labels = labels[idx] | |
selected_boxes = non_maximum_suppression(boxes, scores, labels=labels, iou_threshold=iou_threshold) | |
#find orientation of the task by checking the size of all the boxes and delete the one that are not in the same orientation | |
vertical = 0 | |
for i in range(len(labels)): | |
if labels[i] != list(object_dict.values()).index('task'): | |
continue | |
if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]: | |
vertical += 1 | |
horizontal = len(labels) - vertical | |
for i in range(len(labels)): | |
if labels[i] != list(object_dict.values()).index('task'): | |
continue | |
if vertical < horizontal: | |
if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]: | |
#find the element in the list and remove it | |
if i in selected_boxes: | |
selected_boxes.remove(i) | |
elif vertical > horizontal: | |
if boxes[i][2]-boxes[i][0] > boxes[i][3]-boxes[i][1]: | |
#find the element in the list and remove it | |
if i in selected_boxes: | |
selected_boxes.remove(i) | |
else: | |
pass | |
boxes = boxes[selected_boxes] | |
scores = scores[selected_boxes] | |
labels = labels[selected_boxes] | |
prediction = { | |
'boxes': boxes, | |
'scores': scores, | |
'labels': labels, | |
} | |
image = image.permute(1, 2, 0).cpu().numpy() | |
image = (image * 255).astype(np.uint8) | |
return image, prediction | |
def arrow_prediction(model, image, score_threshold=0.5, iou_threshold=0.5, distance_treshold=15): | |
model.eval() | |
with torch.no_grad(): | |
image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) | |
predictions = model(image_tensor) | |
boxes = predictions[0]['boxes'].cpu().numpy() | |
labels = predictions[0]['labels'].cpu().numpy() + (len(object_dict) - 1) | |
scores = predictions[0]['scores'].cpu().numpy() | |
keypoints = predictions[0]['keypoints'].cpu().numpy() | |
idx = np.where(scores > score_threshold)[0] | |
boxes = boxes[idx] | |
scores = scores[idx] | |
labels = labels[idx] | |
keypoints = keypoints[idx] | |
selected_boxes = non_maximum_suppression(boxes, scores, iou_threshold=iou_threshold) | |
boxes = boxes[selected_boxes] | |
scores = scores[selected_boxes] | |
labels = labels[selected_boxes] | |
keypoints = keypoints[selected_boxes] | |
keypoints = keypoint_correction(keypoints, boxes, labels, class_dict, distance_treshold=distance_treshold) | |
prediction = { | |
'boxes': boxes, | |
'scores': scores, | |
'labels': labels, | |
'keypoints': keypoints, | |
} | |
image = image.permute(1, 2, 0).cpu().numpy() | |
image = (image * 255).astype(np.uint8) | |
return image, prediction | |
def mix_predictions(objects_pred, arrow_pred): | |
# Initialize the list of lists for keypoints | |
object_keypoints = [] | |
# Number of boxes | |
num_boxes = len(objects_pred['boxes']) | |
# Iterate over the number of boxes | |
for _ in range(num_boxes): | |
# Each box has 2 keypoints, both initialized to [0, 0, 0] | |
keypoints = [[0, 0, 0], [0, 0, 0]] | |
object_keypoints.append(keypoints) | |
#concatenate the two predictions | |
boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes'])) | |
labels = np.concatenate((objects_pred['labels'], arrow_pred['labels'])) | |
scores = np.concatenate((objects_pred['scores'], arrow_pred['scores'])) | |
keypoints = np.concatenate((object_keypoints, arrow_pred['keypoints'])) | |
return boxes, labels, scores, keypoints | |
def regroup_elements_by_pool(boxes, labels, class_dict): | |
""" | |
Regroups elements by the pool they belong to, and creates a single new pool for elements that are not in any existing pool. | |
Parameters: | |
- boxes (list): List of bounding boxes. | |
- labels (list): List of labels corresponding to each bounding box. | |
- class_dict (dict): Dictionary mapping class indices to class names. | |
Returns: | |
- dict: A dictionary where each key is a pool's index and the value is a list of elements within that pool. | |
""" | |
# Initialize a dictionary to hold the elements in each pool | |
pool_dict = {} | |
# Identify the bounding boxes of the pools | |
pool_indices = [i for i, label in enumerate(labels) if (class_dict[label.item()] == 'pool')] | |
pool_boxes = [boxes[i] for i in pool_indices] | |
if not pool_indices: | |
# If no pools or lanes are detected, create a single pool with all elements | |
labels = np.append(labels, list(class_dict.values()).index('pool')) | |
pool_dict[len(labels)-1] = list(range(len(boxes))) | |
else: | |
# Initialize each pool index with an empty list | |
for pool_index in pool_indices: | |
pool_dict[pool_index] = [] | |
# Initialize a list for elements not in any pool | |
elements_not_in_pool = [] | |
# Iterate over all elements | |
for i, box in enumerate(boxes): | |
if i in pool_indices or class_dict[labels[i]] == 'messageFlow': | |
continue # Skip pool boxes themselves and messageFlow elements | |
assigned_to_pool = False | |
for j, pool_box in enumerate(pool_boxes): | |
# Check if the element is within the pool's bounding box | |
if (box[0] >= pool_box[0] and box[1] >= pool_box[1] and | |
box[2] <= pool_box[2] and box[3] <= pool_box[3]): | |
pool_index = pool_indices[j] | |
pool_dict[pool_index].append(i) | |
assigned_to_pool = True | |
break | |
if not assigned_to_pool: | |
if class_dict[labels[i]] != 'messageFlow' and class_dict[labels[i]] != 'lane': | |
elements_not_in_pool.append(i) | |
if elements_not_in_pool: | |
new_pool_index = max(pool_dict.keys()) + 1 | |
labels = np.append(labels, list(class_dict.values()).index('pool')) | |
pool_dict[new_pool_index] = elements_not_in_pool | |
# Separate empty pools | |
non_empty_pools = {k: v for k, v in pool_dict.items() if v} | |
empty_pools = {k: v for k, v in pool_dict.items() if not v} | |
# Merge non-empty pools followed by empty pools | |
pool_dict = {**non_empty_pools, **empty_pools} | |
return pool_dict, labels | |
def create_links(keypoints, boxes, labels, class_dict): | |
best_points = [] | |
links = [] | |
for i in range(len(labels)): | |
if labels[i]==list(class_dict.values()).index('sequenceFlow') or labels[i]==list(class_dict.values()).index('messageFlow'): | |
closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels) | |
closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels) | |
if closest1 is not None and closest2 is not None: | |
best_points.append([point_start, point_end]) | |
links.append([closest1, closest2]) | |
else: | |
best_points.append([None,None]) | |
links.append([None,None]) | |
for i in range(len(labels)): | |
if labels[i]==list(class_dict.values()).index('dataAssociation'): | |
closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels) | |
closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels) | |
if closest1 is not None and closest2 is not None: | |
best_points[i] = ([point_start, point_end]) | |
links[i] = ([closest1, closest2]) | |
return links, best_points | |
def correction_labels(boxes, labels, class_dict, pool_dict, flow_links): | |
for pool_index, elements in pool_dict.items(): | |
print(f"Pool {pool_index} contains elements: {elements}") | |
#check if each link is in the same pool | |
for i in range(len(flow_links)): | |
if labels[i] == list(class_dict.values()).index('sequenceFlow'): | |
id1, id2 = flow_links[i] | |
if (id1 and id2) is not None: | |
if id1 in elements and id2 in elements: | |
continue | |
elif id1 not in elements and id2 not in elements: | |
continue | |
else: | |
print('change the link from sequenceFlow to messageFlow') | |
labels[i]=list(class_dict.values()).index('messageFlow') | |
return labels, flow_links | |
def last_correction(boxes, labels, scores, keypoints, links, best_points, pool_dict): | |
#delete pool that are have only messageFlow on it | |
delete_pool = [] | |
for pool_index, elements in pool_dict.items(): | |
if all([labels[i] == list(class_dict.values()).index('messageFlow') for i in elements]): | |
if len(elements) > 0: | |
delete_pool.append(pool_dict[pool_index]) | |
print(f"Pool {pool_index} contains only messageFlow elements, deleting it") | |
#sort index | |
delete_pool = sorted(delete_pool, reverse=True) | |
for pool in delete_pool: | |
index = list(pool_dict.keys())[list(pool_dict.values()).index(pool)] | |
del pool_dict[index] | |
delete_elements = [] | |
# Check if there is an arrow that has the same links | |
for i in range(len(labels)): | |
for j in range(i+1, len(labels)): | |
if labels[i] == list(class_dict.values()).index('sequenceFlow') and labels[j] == list(class_dict.values()).index('sequenceFlow'): | |
if links[i] == links[j]: | |
print(f'element {i} and {j} have the same links') | |
if scores[i] > scores[j]: | |
print('delete element', j) | |
delete_elements.append(j) | |
else: | |
print('delete element', i) | |
delete_elements.append(i) | |
boxes = np.delete(boxes, delete_elements, axis=0) | |
labels = np.delete(labels, delete_elements) | |
scores = np.delete(scores, delete_elements) | |
keypoints = np.delete(keypoints, delete_elements, axis=0) | |
links = np.delete(links, delete_elements, axis=0) | |
best_points = [point for i, point in enumerate(best_points) if i not in delete_elements] | |
#also delete the element in the pool_dict | |
for pool_index, elements in pool_dict.items(): | |
pool_dict[pool_index] = [i for i in elements if i not in delete_elements] | |
return boxes, labels, scores, keypoints, links, best_points, pool_dict | |
def give_link_to_element(links, labels): | |
#give a link to event to allow the creation of the BPMN id with start, indermediate and end event | |
for i in range(len(links)): | |
if labels[i] == list(class_dict.values()).index('sequenceFlow'): | |
id1, id2 = links[i] | |
if (id1 and id2) is not None: | |
links[id1][1] = i | |
links[id2][0] = i | |
return links | |
def full_prediction(model_object, model_arrow, image, score_threshold=0.5, iou_threshold=0.5, resize=True, distance_treshold=15): | |
model_object.eval() # Set the model to evaluation mode | |
model_arrow.eval() # Set the model to evaluation mode | |
# Load an image | |
with torch.no_grad(): # Disable gradient calculation for inference | |
_, objects_pred = object_prediction(model_object, image, score_threshold=score_threshold, iou_threshold=iou_threshold) | |
_, arrow_pred = arrow_prediction(model_arrow, image, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold) | |
#print('Object prediction:', objects_pred) | |
boxes, labels, scores, keypoints = mix_predictions(objects_pred, arrow_pred) | |
# Regroup elements by pool | |
pool_dict, labels = regroup_elements_by_pool(boxes,labels, class_dict) | |
# Create links between elements | |
flow_links, best_points = create_links(keypoints, boxes, labels, class_dict) | |
#Correct the labels of some sequenceflow that cross multiple pool | |
labels, flow_links = correction_labels(boxes, labels, class_dict, pool_dict, flow_links) | |
#give a link to event to allow the creation of the BPMN id with start, indermediate and end event | |
flow_links = give_link_to_element(flow_links, labels) | |
boxes,labels,scores,keypoints,flow_links,best_points,pool_dict = last_correction(boxes,labels,scores,keypoints,flow_links,best_points, pool_dict) | |
image = image.permute(1, 2, 0).cpu().numpy() | |
image = (image * 255).astype(np.uint8) | |
idx = [] | |
for i in range(len(labels)): | |
idx.append(i) | |
bpmn_id = [class_dict[labels[i]] for i in range(len(labels))] | |
data = { | |
'image': image, | |
'idx': idx, | |
'boxes': boxes, | |
'labels': labels, | |
'scores': scores, | |
'keypoints': keypoints, | |
'links': flow_links, | |
'best_points': best_points, | |
'pool_dict': pool_dict, | |
'BPMN_id': bpmn_id, | |
} | |
# give a unique BPMN id to each element | |
data = create_BPMN_id(data) | |
return image, data | |
def evaluate_model_by_class(pred_boxes, true_boxes, pred_labels, true_labels, model_dict, iou_threshold=0.5): | |
# Initialize dictionaries to hold per-class counts | |
class_tp = {cls: 0 for cls in model_dict.values()} | |
class_fp = {cls: 0 for cls in model_dict.values()} | |
class_fn = {cls: 0 for cls in model_dict.values()} | |
# Track which true boxes have been matched | |
matched = [False] * len(true_boxes) | |
# Check each prediction against true boxes | |
for pred_box, pred_label in zip(pred_boxes, pred_labels): | |
match_found = False | |
for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): | |
if not matched[idx] and pred_label == true_label: | |
if iou(np.array(pred_box), np.array(true_box)) >= iou_threshold: | |
class_tp[model_dict[pred_label]] += 1 | |
matched[idx] = True | |
match_found = True | |
break | |
if not match_found: | |
class_fp[model_dict[pred_label]] += 1 | |
# Count false negatives | |
for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): | |
if not matched[idx]: | |
class_fn[model_dict[true_label]] += 1 | |
# Calculate precision, recall, and F1-score per class | |
class_precision = {} | |
class_recall = {} | |
class_f1_score = {} | |
for cls in model_dict.values(): | |
precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0 | |
recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0 | |
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 | |
class_precision[cls] = precision | |
class_recall[cls] = recall | |
class_f1_score[cls] = f1_score | |
return class_precision, class_recall, class_f1_score | |
def keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold=5): | |
result = 0 | |
reverted = False | |
#find the position of keypoints in the list | |
idx = np.where(pred_boxes == pred_box)[0][0] | |
idx2 = np.where(true_boxes == true_box)[0][0] | |
keypoint1_pred = pred_keypoints[idx][0] | |
keypoint1_true = true_keypoints[idx2][0] | |
keypoint2_pred = pred_keypoints[idx][1] | |
keypoint2_true = true_keypoints[idx2][1] | |
distance1 = np.linalg.norm(keypoint1_pred[:2] - keypoint1_true[:2]) | |
distance2 = np.linalg.norm(keypoint2_pred[:2] - keypoint2_true[:2]) | |
distance3 = np.linalg.norm(keypoint1_pred[:2] - keypoint2_true[:2]) | |
distance4 = np.linalg.norm(keypoint2_pred[:2] - keypoint1_true[:2]) | |
if distance1 < distance_threshold: | |
result += 1 | |
if distance2 < distance_threshold: | |
result += 1 | |
if distance3 < distance_threshold or distance4 < distance_threshold: | |
reverted = True | |
return result, reverted | |
def evaluate_single_image(pred_boxes, true_boxes, pred_labels, true_labels, pred_keypoints, true_keypoints, iou_threshold=0.5, distance_threshold=5): | |
tp, fp, fn = 0, 0, 0 | |
key_t, key_f = 0, 0 | |
labels_t, labels_f = 0, 0 | |
reverted_tot = 0 | |
matched_true_boxes = set() | |
for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): | |
match_found = False | |
for true_idx, true_box in enumerate(true_boxes): | |
if true_idx in matched_true_boxes: | |
continue | |
iou_val = iou(pred_box, true_box) | |
if iou_val >= iou_threshold: | |
if true_keypoints is not None and pred_keypoints is not None: | |
key_result, reverted = keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold) | |
key_t += key_result | |
key_f += 2 - key_result | |
if reverted: | |
reverted_tot += 1 | |
match_found = True | |
matched_true_boxes.add(true_idx) | |
if pred_label == true_labels[true_idx]: | |
labels_t += 1 | |
else: | |
labels_f += 1 | |
tp += 1 | |
break | |
if not match_found: | |
fp += 1 | |
fn = len(true_boxes) - tp | |
return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted_tot | |
def pred_4_evaluation(model, loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type='object'): | |
model.eval() | |
tp, fp, fn = 0, 0, 0 | |
labels_t, labels_f = 0, 0 | |
key_t, key_f = 0, 0 | |
reverted = 0 | |
with torch.no_grad(): | |
for images, targets_im in tqdm(loader, desc="Testing... "): # Wrap the loader with tqdm | |
devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
images = [image.to(devices) for image in images] | |
targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im] | |
predictions = model(images) | |
for target, prediction in zip(targets, predictions): | |
true_boxes = target['boxes'].cpu().numpy() | |
true_labels = target['labels'].cpu().numpy() | |
if 'keypoints' in target: | |
true_keypoints = target['keypoints'].cpu().numpy() | |
pred_boxes = prediction['boxes'].cpu().numpy() | |
scores = prediction['scores'].cpu().numpy() | |
pred_labels = prediction['labels'].cpu().numpy() | |
if 'keypoints' in prediction: | |
pred_keypoints = prediction['keypoints'].cpu().numpy() | |
selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold) | |
pred_boxes = pred_boxes[selected_boxes] | |
scores = scores[selected_boxes] | |
pred_labels = pred_labels[selected_boxes] | |
if 'keypoints' in prediction: | |
pred_keypoints = pred_keypoints[selected_boxes] | |
filtered_boxes = [] | |
filtered_labels = [] | |
filtered_keypoints = [] | |
if 'keypoints' not in prediction: | |
#create a list of zeros of length equal to the number of boxes | |
pred_keypoints = [np.zeros((2, 3)) for _ in range(len(pred_boxes))] | |
for box, score, label, keypoints in zip(pred_boxes, scores, pred_labels, pred_keypoints): | |
if score >= score_threshold: | |
filtered_boxes.append(box) | |
filtered_labels.append(label) | |
if 'keypoints' in prediction: | |
filtered_keypoints.append(keypoints) | |
if key_correction and ('keypoints' in prediction): | |
filtered_keypoints = keypoint_correction(filtered_keypoints, filtered_boxes, filtered_labels) | |
if 'keypoints' not in target: | |
filtered_keypoints = None | |
true_keypoints = None | |
tp_img, fp_img, fn_img, labels_t_img, labels_f_img, key_t_img, key_f_img, reverted_img = evaluate_single_image( | |
filtered_boxes, true_boxes, filtered_labels, true_labels, filtered_keypoints, true_keypoints, iou_threshold, distance_threshold) | |
tp += tp_img | |
fp += fp_img | |
fn += fn_img | |
labels_t += labels_t_img | |
labels_f += labels_f_img | |
key_t += key_t_img | |
key_f += key_f_img | |
reverted += reverted_img | |
return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted | |
def main_evaluation(model, test_loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type = 'object'): | |
tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted = pred_4_evaluation(model, test_loader, score_threshold, iou_threshold, distance_threshold, key_correction, model_type) | |
labels_precision = labels_t / (labels_t + labels_f) if (labels_t + labels_f) > 0 else 0 | |
precision = tp / (tp + fp) if (tp + fp) > 0 else 0 | |
recall = tp / (tp + fn) if (tp + fn) > 0 else 0 | |
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 | |
if model_type == 'arrow': | |
key_accuracy = key_t / (key_t + key_f) if (key_t + key_f) > 0 else 0 | |
reverted_accuracy = reverted / (key_t + key_f) if (key_t + key_f) > 0 else 0 | |
else: | |
key_accuracy = 0 | |
reverted_accuracy = 0 | |
return labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy | |
def evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold=0.5): | |
matched_true_boxes = set() | |
for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): | |
match_found = False | |
for true_idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): | |
if true_idx in matched_true_boxes: | |
continue | |
if pred_label == true_label and iou(np.array(pred_box), np.array(true_box)) >= iou_threshold: | |
class_tp[model_dict[pred_label]] += 1 | |
matched_true_boxes.add(true_idx) | |
match_found = True | |
break | |
if not match_found: | |
class_fp[model_dict[pred_label]] += 1 | |
for idx, true_label in enumerate(true_labels): | |
if idx not in matched_true_boxes: | |
class_fn[model_dict[true_label]] += 1 | |
def pred_4_evaluation_per_class(model, loader, score_threshold=0.5, iou_threshold=0.5): | |
model.eval() | |
with torch.no_grad(): | |
for images, targets_im in tqdm(loader, desc="Testing... "): | |
devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
images = [image.to(devices) for image in images] | |
targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im] | |
predictions = model(images) | |
for target, prediction in zip(targets, predictions): | |
true_boxes = target['boxes'].cpu().numpy() | |
true_labels = target['labels'].cpu().numpy() | |
pred_boxes = prediction['boxes'].cpu().numpy() | |
scores = prediction['scores'].cpu().numpy() | |
pred_labels = prediction['labels'].cpu().numpy() | |
idx = np.where(scores > score_threshold)[0] | |
pred_boxes = pred_boxes[idx] | |
scores = scores[idx] | |
pred_labels = pred_labels[idx] | |
selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold) | |
pred_boxes = pred_boxes[selected_boxes] | |
scores = scores[selected_boxes] | |
pred_labels = pred_labels[selected_boxes] | |
yield pred_boxes, true_boxes, pred_labels, true_labels | |
def evaluate_model_by_class(model, test_loader, model_dict, score_threshold=0.5, iou_threshold=0.5): | |
class_tp = {cls: 0 for cls in model_dict.values()} | |
class_fp = {cls: 0 for cls in model_dict.values()} | |
class_fn = {cls: 0 for cls in model_dict.values()} | |
for pred_boxes, true_boxes, pred_labels, true_labels in pred_4_evaluation_per_class(model, test_loader, score_threshold, iou_threshold): | |
evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold) | |
class_precision = {} | |
class_recall = {} | |
class_f1_score = {} | |
for cls in model_dict.values(): | |
precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0 | |
recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0 | |
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 | |
class_precision[cls] = precision | |
class_recall[cls] = recall | |
class_f1_score[cls] = f1_score | |
return class_precision, class_recall, class_f1_score |