Spaces:
Running
Running
test loading for image
Browse files
app.py
CHANGED
@@ -274,7 +274,7 @@ def main():
|
|
274 |
st.image("./images/banner.png", use_column_width=True)
|
275 |
|
276 |
# Sidebar content
|
277 |
-
st.sidebar.header("This BPMN model recognition
|
278 |
st.sidebar.subheader("Instructions:")
|
279 |
st.sidebar.text("1. Upload you image")
|
280 |
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
|
@@ -282,7 +282,7 @@ def main():
|
|
282 |
st.sidebar.text("4. Set the scale for the XML file \n (default is 1.0)")
|
283 |
st.sidebar.text("5. Click on 'Launch Prediction'")
|
284 |
|
285 |
-
st.sidebar.subheader("You can close
|
286 |
|
287 |
# Set the title of the app
|
288 |
st.title("BPMN model recognition demo")
|
@@ -311,22 +311,23 @@ def main():
|
|
311 |
|
312 |
# Display the uploaded image if the user has uploaded an image
|
313 |
if uploaded_file is not None:
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
st.image(cropped_image, caption="Cropped Image", use_column_width=False, width=500)
|
322 |
-
|
323 |
-
# Display the options for the user to set the score threshold and scale
|
324 |
-
if cropped_image is not None:
|
325 |
-
col1, col2, col3 = st.columns(3)
|
326 |
-
with col1:
|
327 |
-
score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
|
328 |
with col2:
|
329 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
# Launch the prediction when the user clicks the button
|
332 |
if st.button("Launch Prediction"):
|
|
|
274 |
st.image("./images/banner.png", use_column_width=True)
|
275 |
|
276 |
# Sidebar content
|
277 |
+
st.sidebar.header("This BPMN AI model recognition is proposed by ELCA in collaboration with EPFL.")
|
278 |
st.sidebar.subheader("Instructions:")
|
279 |
st.sidebar.text("1. Upload you image")
|
280 |
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
|
|
|
282 |
st.sidebar.text("4. Set the scale for the XML file \n (default is 1.0)")
|
283 |
st.sidebar.text("5. Click on 'Launch Prediction'")
|
284 |
|
285 |
+
st.sidebar.subheader("You can close this sidebar")
|
286 |
|
287 |
# Set the title of the app
|
288 |
st.title("BPMN model recognition demo")
|
|
|
311 |
|
312 |
# Display the uploaded image if the user has uploaded an image
|
313 |
if uploaded_file is not None:
|
314 |
+
with st.spinner('wait for image...'):
|
315 |
+
original_image = get_image(uploaded_file)
|
316 |
+
col1, col2 = st.columns(2)
|
317 |
+
|
318 |
+
# Create a cropper to allow the user to crop the image and display the cropped image
|
319 |
+
with col1:
|
320 |
+
cropped_image = st_cropper(original_image, realtime_update=True, box_color='#0000FF', should_resize_image=True, default_coords=(30, original_image.size[0]-30, 30, original_image.size[1]-30))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
with col2:
|
322 |
+
st.image(cropped_image, caption="Cropped Image", use_column_width=False, width=500)
|
323 |
+
|
324 |
+
# Display the options for the user to set the score threshold and scale
|
325 |
+
if cropped_image is not None:
|
326 |
+
col1, col2, col3 = st.columns(3)
|
327 |
+
with col1:
|
328 |
+
score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
|
329 |
+
with col2:
|
330 |
+
st.session_state.scale = st.slider("Set scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
|
331 |
|
332 |
# Launch the prediction when the user clicks the button
|
333 |
if st.button("Launch Prediction"):
|