import numpy as np import torch from utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou from tqdm import tqdm from toXML import create_BPMN_id def non_maximum_suppression(boxes, scores, labels=None, iou_threshold=0.5): idxs = np.argsort(scores) # Sort the boxes according to their scores in ascending order selected_boxes = [] while len(idxs) > 0: last = len(idxs) - 1 i = idxs[last] # Skip if the label is a lane if labels is not None and class_dict[labels[i]] == 'lane': selected_boxes.append(i) idxs = np.delete(idxs, last) continue selected_boxes.append(i) # Find the intersection of the box with the rest suppress = [last] for pos in range(0, last): j = idxs[pos] if iou(boxes[i], boxes[j]) > iou_threshold: suppress.append(pos) idxs = np.delete(idxs, suppress) # Return only the boxes that were selected return selected_boxes def keypoint_correction(keypoints, boxes, labels, model_dict=arrow_dict, distance_treshold=15): for idx, (key1, key2) in enumerate(keypoints): if labels[idx] not in [list(model_dict.values()).index('sequenceFlow'), list(model_dict.values()).index('messageFlow'), list(model_dict.values()).index('dataAssociation')]: continue # Calculate the Euclidean distance between the two keypoints distance = np.linalg.norm(key1[:2] - key2[:2]) if distance < distance_treshold: print('Key modified for index:', idx) x_new,y_new, x,y = find_other_keypoint(idx, keypoints, boxes) keypoints[idx][0][:2] = [x_new,y_new] keypoints[idx][1][:2] = [x,y] return keypoints def object_prediction(model, image, score_threshold=0.5, iou_threshold=0.5): model.eval() with torch.no_grad(): image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) predictions = model(image_tensor) boxes = predictions[0]['boxes'].cpu().numpy() labels = predictions[0]['labels'].cpu().numpy() scores = predictions[0]['scores'].cpu().numpy() idx = np.where(scores > score_threshold)[0] boxes = boxes[idx] scores = scores[idx] labels = labels[idx] selected_boxes = non_maximum_suppression(boxes, scores, labels=labels, iou_threshold=iou_threshold) #find orientation of the task by checking the size of all the boxes and delete the one that are not in the same orientation vertical = 0 for i in range(len(labels)): if labels[i] != list(object_dict.values()).index('task'): continue if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]: vertical += 1 horizontal = len(labels) - vertical for i in range(len(labels)): if labels[i] != list(object_dict.values()).index('task'): continue if vertical < horizontal: if boxes[i][2]-boxes[i][0] < boxes[i][3]-boxes[i][1]: #find the element in the list and remove it if i in selected_boxes: selected_boxes.remove(i) elif vertical > horizontal: if boxes[i][2]-boxes[i][0] > boxes[i][3]-boxes[i][1]: #find the element in the list and remove it if i in selected_boxes: selected_boxes.remove(i) else: pass boxes = boxes[selected_boxes] scores = scores[selected_boxes] labels = labels[selected_boxes] prediction = { 'boxes': boxes, 'scores': scores, 'labels': labels, } image = image.permute(1, 2, 0).cpu().numpy() image = (image * 255).astype(np.uint8) return image, prediction def arrow_prediction(model, image, score_threshold=0.5, iou_threshold=0.5, distance_treshold=15): model.eval() with torch.no_grad(): image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) predictions = model(image_tensor) boxes = predictions[0]['boxes'].cpu().numpy() labels = predictions[0]['labels'].cpu().numpy() + (len(object_dict) - 1) scores = predictions[0]['scores'].cpu().numpy() keypoints = predictions[0]['keypoints'].cpu().numpy() idx = np.where(scores > score_threshold)[0] boxes = boxes[idx] scores = scores[idx] labels = labels[idx] keypoints = keypoints[idx] selected_boxes = non_maximum_suppression(boxes, scores, iou_threshold=iou_threshold) boxes = boxes[selected_boxes] scores = scores[selected_boxes] labels = labels[selected_boxes] keypoints = keypoints[selected_boxes] keypoints = keypoint_correction(keypoints, boxes, labels, class_dict, distance_treshold=distance_treshold) prediction = { 'boxes': boxes, 'scores': scores, 'labels': labels, 'keypoints': keypoints, } image = image.permute(1, 2, 0).cpu().numpy() image = (image * 255).astype(np.uint8) return image, prediction def mix_predictions(objects_pred, arrow_pred): # Initialize the list of lists for keypoints object_keypoints = [] # Number of boxes num_boxes = len(objects_pred['boxes']) # Iterate over the number of boxes for _ in range(num_boxes): # Each box has 2 keypoints, both initialized to [0, 0, 0] keypoints = [[0, 0, 0], [0, 0, 0]] object_keypoints.append(keypoints) #concatenate the two predictions boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes'])) labels = np.concatenate((objects_pred['labels'], arrow_pred['labels'])) scores = np.concatenate((objects_pred['scores'], arrow_pred['scores'])) keypoints = np.concatenate((object_keypoints, arrow_pred['keypoints'])) return boxes, labels, scores, keypoints def regroup_elements_by_pool(boxes, labels, class_dict): """ Regroups elements by the pool they belong to, and creates a single new pool for elements that are not in any existing pool. Parameters: - boxes (list): List of bounding boxes. - labels (list): List of labels corresponding to each bounding box. - class_dict (dict): Dictionary mapping class indices to class names. Returns: - dict: A dictionary where each key is a pool's index and the value is a list of elements within that pool. """ # Initialize a dictionary to hold the elements in each pool pool_dict = {} # Identify the bounding boxes of the pools pool_indices = [i for i, label in enumerate(labels) if (class_dict[label.item()] == 'pool')] pool_boxes = [boxes[i] for i in pool_indices] if not pool_indices: # If no pools or lanes are detected, create a single pool with all elements labels = np.append(labels, list(class_dict.values()).index('pool')) pool_dict[len(labels)-1] = list(range(len(boxes))) else: # Initialize each pool index with an empty list for pool_index in pool_indices: pool_dict[pool_index] = [] # Initialize a list for elements not in any pool elements_not_in_pool = [] # Iterate over all elements for i, box in enumerate(boxes): if i in pool_indices or class_dict[labels[i]] == 'messageFlow': continue # Skip pool boxes themselves and messageFlow elements assigned_to_pool = False for j, pool_box in enumerate(pool_boxes): # Check if the element is within the pool's bounding box if (box[0] >= pool_box[0] and box[1] >= pool_box[1] and box[2] <= pool_box[2] and box[3] <= pool_box[3]): pool_index = pool_indices[j] pool_dict[pool_index].append(i) assigned_to_pool = True break if not assigned_to_pool: if class_dict[labels[i]] != 'messageFlow' and class_dict[labels[i]] != 'lane': elements_not_in_pool.append(i) if elements_not_in_pool: new_pool_index = max(pool_dict.keys()) + 1 labels = np.append(labels, list(class_dict.values()).index('pool')) pool_dict[new_pool_index] = elements_not_in_pool # Separate empty pools non_empty_pools = {k: v for k, v in pool_dict.items() if v} empty_pools = {k: v for k, v in pool_dict.items() if not v} # Merge non-empty pools followed by empty pools pool_dict = {**non_empty_pools, **empty_pools} return pool_dict, labels def create_links(keypoints, boxes, labels, class_dict): best_points = [] links = [] for i in range(len(labels)): if labels[i]==list(class_dict.values()).index('sequenceFlow') or labels[i]==list(class_dict.values()).index('messageFlow'): closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels) closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels) if closest1 is not None and closest2 is not None: best_points.append([point_start, point_end]) links.append([closest1, closest2]) else: best_points.append([None,None]) links.append([None,None]) for i in range(len(labels)): if labels[i]==list(class_dict.values()).index('dataAssociation'): closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels) closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels) if closest1 is not None and closest2 is not None: best_points[i] = ([point_start, point_end]) links[i] = ([closest1, closest2]) return links, best_points def correction_labels(boxes, labels, class_dict, pool_dict, flow_links): for pool_index, elements in pool_dict.items(): print(f"Pool {pool_index} contains elements: {elements}") #check if each link is in the same pool for i in range(len(flow_links)): if labels[i] == list(class_dict.values()).index('sequenceFlow'): id1, id2 = flow_links[i] if (id1 and id2) is not None: if id1 in elements and id2 in elements: continue elif id1 not in elements and id2 not in elements: continue else: print('change the link from sequenceFlow to messageFlow') labels[i]=list(class_dict.values()).index('messageFlow') for i in range(len(labels)): #check if dataAssociation is connected to a dataObject if labels[i] == list(class_dict.values()).index('dataAssociation'): id1, id2 = flow_links[i] if (id1 and id2) is not None: label1 = labels[id1] label2 = labels[id2] if label1 == list(class_dict.values()).index('dataObject') or label2 == list(class_dict.values()).index('dataObject'): continue else: print('change the link from dataAssociation to messageFlow') labels[i]=list(class_dict.values()).index('messageFlow') return labels, flow_links def last_correction(boxes, labels, scores, keypoints, links, best_points, pool_dict): #delete pool that are have only messageFlow on it delete_pool = [] for pool_index, elements in pool_dict.items(): if all([labels[i] == list(class_dict.values()).index('messageFlow') for i in elements]): if len(elements) > 0: delete_pool.append(pool_dict[pool_index]) print(f"Pool {pool_index} contains only messageFlow elements, deleting it") #sort index delete_pool = sorted(delete_pool, reverse=True) for pool in delete_pool: index = list(pool_dict.keys())[list(pool_dict.values()).index(pool)] del pool_dict[index] delete_elements = [] # Check if there is an arrow that has the same links for i in range(len(labels)): for j in range(i+1, len(labels)): if labels[i] == list(class_dict.values()).index('sequenceFlow') and labels[j] == list(class_dict.values()).index('sequenceFlow'): if links[i] == links[j]: print(f'element {i} and {j} have the same links') if scores[i] > scores[j]: print('delete element', j) delete_elements.append(j) else: print('delete element', i) delete_elements.append(i) boxes = np.delete(boxes, delete_elements, axis=0) labels = np.delete(labels, delete_elements) scores = np.delete(scores, delete_elements) keypoints = np.delete(keypoints, delete_elements, axis=0) links = np.delete(links, delete_elements, axis=0) best_points = [point for i, point in enumerate(best_points) if i not in delete_elements] #also delete the element in the pool_dict for pool_index, elements in pool_dict.items(): pool_dict[pool_index] = [i for i in elements if i not in delete_elements] return boxes, labels, scores, keypoints, links, best_points, pool_dict def give_link_to_element(links, labels): #give a link to event to allow the creation of the BPMN id with start, indermediate and end event for i in range(len(links)): if labels[i] == list(class_dict.values()).index('sequenceFlow'): id1, id2 = links[i] if (id1 and id2) is not None: links[id1][1] = i links[id2][0] = i return links def full_prediction(model_object, model_arrow, image, score_threshold=0.5, iou_threshold=0.5, resize=True, distance_treshold=15): model_object.eval() # Set the model to evaluation mode model_arrow.eval() # Set the model to evaluation mode # Load an image with torch.no_grad(): # Disable gradient calculation for inference _, objects_pred = object_prediction(model_object, image, score_threshold=score_threshold, iou_threshold=iou_threshold) _, arrow_pred = arrow_prediction(model_arrow, image, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold) #print('Object prediction:', objects_pred) boxes, labels, scores, keypoints = mix_predictions(objects_pred, arrow_pred) # Regroup elements by pool pool_dict, labels = regroup_elements_by_pool(boxes,labels, class_dict) # Create links between elements flow_links, best_points = create_links(keypoints, boxes, labels, class_dict) #Correct the labels of some sequenceflow that cross multiple pool labels, flow_links = correction_labels(boxes, labels, class_dict, pool_dict, flow_links) #give a link to event to allow the creation of the BPMN id with start, indermediate and end event flow_links = give_link_to_element(flow_links, labels) boxes,labels,scores,keypoints,flow_links,best_points,pool_dict = last_correction(boxes,labels,scores,keypoints,flow_links,best_points, pool_dict) image = image.permute(1, 2, 0).cpu().numpy() image = (image * 255).astype(np.uint8) idx = [] for i in range(len(labels)): idx.append(i) bpmn_id = [class_dict[labels[i]] for i in range(len(labels))] data = { 'image': image, 'idx': idx, 'boxes': boxes, 'labels': labels, 'scores': scores, 'keypoints': keypoints, 'links': flow_links, 'best_points': best_points, 'pool_dict': pool_dict, 'BPMN_id': bpmn_id, } # give a unique BPMN id to each element data = create_BPMN_id(data) return image, data def evaluate_model_by_class(pred_boxes, true_boxes, pred_labels, true_labels, model_dict, iou_threshold=0.5): # Initialize dictionaries to hold per-class counts class_tp = {cls: 0 for cls in model_dict.values()} class_fp = {cls: 0 for cls in model_dict.values()} class_fn = {cls: 0 for cls in model_dict.values()} # Track which true boxes have been matched matched = [False] * len(true_boxes) # Check each prediction against true boxes for pred_box, pred_label in zip(pred_boxes, pred_labels): match_found = False for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): if not matched[idx] and pred_label == true_label: if iou(np.array(pred_box), np.array(true_box)) >= iou_threshold: class_tp[model_dict[pred_label]] += 1 matched[idx] = True match_found = True break if not match_found: class_fp[model_dict[pred_label]] += 1 # Count false negatives for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): if not matched[idx]: class_fn[model_dict[true_label]] += 1 # Calculate precision, recall, and F1-score per class class_precision = {} class_recall = {} class_f1_score = {} for cls in model_dict.values(): precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0 recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 class_precision[cls] = precision class_recall[cls] = recall class_f1_score[cls] = f1_score return class_precision, class_recall, class_f1_score def keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold=5): result = 0 reverted = False #find the position of keypoints in the list idx = np.where(pred_boxes == pred_box)[0][0] idx2 = np.where(true_boxes == true_box)[0][0] keypoint1_pred = pred_keypoints[idx][0] keypoint1_true = true_keypoints[idx2][0] keypoint2_pred = pred_keypoints[idx][1] keypoint2_true = true_keypoints[idx2][1] distance1 = np.linalg.norm(keypoint1_pred[:2] - keypoint1_true[:2]) distance2 = np.linalg.norm(keypoint2_pred[:2] - keypoint2_true[:2]) distance3 = np.linalg.norm(keypoint1_pred[:2] - keypoint2_true[:2]) distance4 = np.linalg.norm(keypoint2_pred[:2] - keypoint1_true[:2]) if distance1 < distance_threshold: result += 1 if distance2 < distance_threshold: result += 1 if distance3 < distance_threshold or distance4 < distance_threshold: reverted = True return result, reverted def evaluate_single_image(pred_boxes, true_boxes, pred_labels, true_labels, pred_keypoints, true_keypoints, iou_threshold=0.5, distance_threshold=5): tp, fp, fn = 0, 0, 0 key_t, key_f = 0, 0 labels_t, labels_f = 0, 0 reverted_tot = 0 matched_true_boxes = set() for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): match_found = False for true_idx, true_box in enumerate(true_boxes): if true_idx in matched_true_boxes: continue iou_val = iou(pred_box, true_box) if iou_val >= iou_threshold: if true_keypoints is not None and pred_keypoints is not None: key_result, reverted = keypoints_mesure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold) key_t += key_result key_f += 2 - key_result if reverted: reverted_tot += 1 match_found = True matched_true_boxes.add(true_idx) if pred_label == true_labels[true_idx]: labels_t += 1 else: labels_f += 1 tp += 1 break if not match_found: fp += 1 fn = len(true_boxes) - tp return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted_tot def pred_4_evaluation(model, loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type='object'): model.eval() tp, fp, fn = 0, 0, 0 labels_t, labels_f = 0, 0 key_t, key_f = 0, 0 reverted = 0 with torch.no_grad(): for images, targets_im in tqdm(loader, desc="Testing... "): # Wrap the loader with tqdm devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') images = [image.to(devices) for image in images] targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im] predictions = model(images) for target, prediction in zip(targets, predictions): true_boxes = target['boxes'].cpu().numpy() true_labels = target['labels'].cpu().numpy() if 'keypoints' in target: true_keypoints = target['keypoints'].cpu().numpy() pred_boxes = prediction['boxes'].cpu().numpy() scores = prediction['scores'].cpu().numpy() pred_labels = prediction['labels'].cpu().numpy() if 'keypoints' in prediction: pred_keypoints = prediction['keypoints'].cpu().numpy() selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold) pred_boxes = pred_boxes[selected_boxes] scores = scores[selected_boxes] pred_labels = pred_labels[selected_boxes] if 'keypoints' in prediction: pred_keypoints = pred_keypoints[selected_boxes] filtered_boxes = [] filtered_labels = [] filtered_keypoints = [] if 'keypoints' not in prediction: #create a list of zeros of length equal to the number of boxes pred_keypoints = [np.zeros((2, 3)) for _ in range(len(pred_boxes))] for box, score, label, keypoints in zip(pred_boxes, scores, pred_labels, pred_keypoints): if score >= score_threshold: filtered_boxes.append(box) filtered_labels.append(label) if 'keypoints' in prediction: filtered_keypoints.append(keypoints) if key_correction and ('keypoints' in prediction): filtered_keypoints = keypoint_correction(filtered_keypoints, filtered_boxes, filtered_labels) if 'keypoints' not in target: filtered_keypoints = None true_keypoints = None tp_img, fp_img, fn_img, labels_t_img, labels_f_img, key_t_img, key_f_img, reverted_img = evaluate_single_image( filtered_boxes, true_boxes, filtered_labels, true_labels, filtered_keypoints, true_keypoints, iou_threshold, distance_threshold) tp += tp_img fp += fp_img fn += fn_img labels_t += labels_t_img labels_f += labels_f_img key_t += key_t_img key_f += key_f_img reverted += reverted_img return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted def main_evaluation(model, test_loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type = 'object'): tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted = pred_4_evaluation(model, test_loader, score_threshold, iou_threshold, distance_threshold, key_correction, model_type) labels_precision = labels_t / (labels_t + labels_f) if (labels_t + labels_f) > 0 else 0 precision = tp / (tp + fp) if (tp + fp) > 0 else 0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 if model_type == 'arrow': key_accuracy = key_t / (key_t + key_f) if (key_t + key_f) > 0 else 0 reverted_accuracy = reverted / (key_t + key_f) if (key_t + key_f) > 0 else 0 else: key_accuracy = 0 reverted_accuracy = 0 return labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy def evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold=0.5): matched_true_boxes = set() for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): match_found = False for true_idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)): if true_idx in matched_true_boxes: continue if pred_label == true_label and iou(np.array(pred_box), np.array(true_box)) >= iou_threshold: class_tp[model_dict[pred_label]] += 1 matched_true_boxes.add(true_idx) match_found = True break if not match_found: class_fp[model_dict[pred_label]] += 1 for idx, true_label in enumerate(true_labels): if idx not in matched_true_boxes: class_fn[model_dict[true_label]] += 1 def pred_4_evaluation_per_class(model, loader, score_threshold=0.5, iou_threshold=0.5): model.eval() with torch.no_grad(): for images, targets_im in tqdm(loader, desc="Testing... "): devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') images = [image.to(devices) for image in images] targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im] predictions = model(images) for target, prediction in zip(targets, predictions): true_boxes = target['boxes'].cpu().numpy() true_labels = target['labels'].cpu().numpy() pred_boxes = prediction['boxes'].cpu().numpy() scores = prediction['scores'].cpu().numpy() pred_labels = prediction['labels'].cpu().numpy() idx = np.where(scores > score_threshold)[0] pred_boxes = pred_boxes[idx] scores = scores[idx] pred_labels = pred_labels[idx] selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold) pred_boxes = pred_boxes[selected_boxes] scores = scores[selected_boxes] pred_labels = pred_labels[selected_boxes] yield pred_boxes, true_boxes, pred_labels, true_labels def evaluate_model_by_class(model, test_loader, model_dict, score_threshold=0.5, iou_threshold=0.5): class_tp = {cls: 0 for cls in model_dict.values()} class_fp = {cls: 0 for cls in model_dict.values()} class_fn = {cls: 0 for cls in model_dict.values()} for pred_boxes, true_boxes, pred_labels, true_labels in pred_4_evaluation_per_class(model, test_loader, score_threshold, iou_threshold): evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold) class_precision = {} class_recall = {} class_f1_score = {} for cls in model_dict.values(): precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0 recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 class_precision[cls] = precision class_recall[cls] = recall class_f1_score[cls] = f1_score return class_precision, class_recall, class_f1_score