import streamlit as st import streamlit.components.v1 as components from PIL import Image import torch from torchvision.transforms import functional as F from PIL import Image, ImageEnhance from htlm_webpage import display_bpmn_xml import gc import psutil from OCR import text_prediction, filter_text, mapping_text, rescale from train import prepare_model from utils import draw_annotations, create_loader, class_dict, arrow_dict, object_dict from toXML import calculate_pool_bounds, add_diagram_elements from pathlib import Path from toXML import create_bpmn_object, create_flow_element import xml.etree.ElementTree as ET import numpy as np from display import draw_stream from eval import full_prediction from streamlit_image_comparison import image_comparison from xml.dom import minidom from streamlit_cropper import st_cropper from streamlit_drawable_canvas import st_canvas from utils import find_closest_object from train import get_faster_rcnn_model, get_arrow_model import gdown def get_memory_usage(): process = psutil.Process() mem_info = process.memory_info() return mem_info.rss / (1024 ** 2) # Return memory usage in MB def clear_memory(): st.session_state.clear() gc.collect() # Function to read XML content from a file def read_xml_file(filepath): """ Read XML content from a file """ with open(filepath, 'r', encoding='utf-8') as file: return file.read() # Function to modify bounding box positions based on the given sizes def modif_box_pos(pred, size): for i, (x1, y1, x2, y2) in enumerate(pred['boxes']): center = [(x1 + x2) / 2, (y1 + y2) / 2] label = class_dict[pred['labels'][i]] if label in size: pred['boxes'][i] = [center[0] - size[label][0] / 2, center[1] - size[label][1] / 2, center[0] + size[label][0] / 2, center[1] + size[label][1] / 2] return pred # Function to create a BPMN XML file from prediction results def create_XML(full_pred, text_mapping, scale): namespaces = { 'bpmn': 'http://www.omg.org/spec/BPMN/20100524/MODEL', 'bpmndi': 'http://www.omg.org/spec/BPMN/20100524/DI', 'di': 'http://www.omg.org/spec/DD/20100524/DI', 'dc': 'http://www.omg.org/spec/DD/20100524/DC', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance' } size_elements = { 'start': (36, 36), 'task': (100, 80), 'message': (36, 36), 'messageEvent': (36, 36), 'end': (36, 36), 'exclusiveGateway': (50, 50), 'event': (36, 36), 'parallelGateway': (50, 50), 'sequenceFlow': (150, 10), 'pool': (250, 100), 'lane': (200, 100), 'dataObject': (40, 60), 'dataStore': (60, 60), 'subProcess': (120, 90), 'eventBasedGateway': (50, 50), 'timerEvent': (40, 40), } definitions = ET.Element('bpmn:definitions', { 'xmlns:xsi': namespaces['xsi'], 'xmlns:bpmn': namespaces['bpmn'], 'xmlns:bpmndi': namespaces['bpmndi'], 'xmlns:di': namespaces['di'], 'xmlns:dc': namespaces['dc'], 'targetNamespace': "http://example.bpmn.com", 'id': "simpleExample" }) # Create BPMN collaboration element collaboration = ET.SubElement(definitions, 'bpmn:collaboration', id='collaboration_1') # Create BPMN process elements process = [] for idx in range(len(full_pred['pool_dict'].items())): process_id = f'process_{idx+1}' process.append(ET.SubElement(definitions, 'bpmn:process', id=process_id, isExecutable='false', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]])) bpmndi = ET.SubElement(definitions, 'bpmndi:BPMNDiagram', id='BPMNDiagram_1') bpmnplane = ET.SubElement(bpmndi, 'bpmndi:BPMNPlane', id='BPMNPlane_1', bpmnElement='collaboration_1') full_pred['boxes'] = rescale(scale, full_pred['boxes']) # Add diagram elements for each pool for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()): pool_id = f'participant_{idx+1}' pool = ET.SubElement(collaboration, 'bpmn:participant', id=pool_id, processRef=f'process_{idx+1}', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]]) # Calculate the bounding box for the pool if len(keep_elements) == 0: min_x, min_y, max_x, max_y = full_pred['boxes'][pool_index] pool_width = max_x - min_x pool_height = max_y - min_y else: min_x, min_y, max_x, max_y = calculate_pool_bounds(full_pred, keep_elements, size_elements) pool_width = max_x - min_x + 100 # Adding padding pool_height = max_y - min_y + 100 # Adding padding add_diagram_elements(bpmnplane, pool_id, min_x - 50, min_y - 50, pool_width, pool_height) # Create BPMN elements for each pool for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()): create_bpmn_object(process[idx], bpmnplane, text_mapping, definitions, size_elements, full_pred, keep_elements) # Create message flow elements message_flows = [i for i, label in enumerate(full_pred['labels']) if class_dict[label] == 'messageFlow'] for idx in message_flows: create_flow_element(bpmnplane, text_mapping, idx, size_elements, full_pred, collaboration, message=True) # Create sequence flow elements for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()): for i in keep_elements: if full_pred['labels'][i] == list(class_dict.values()).index('sequenceFlow'): create_flow_element(bpmnplane, text_mapping, i, size_elements, full_pred, process[idx], message=False) # Generate pretty XML string tree = ET.ElementTree(definitions) rough_string = ET.tostring(definitions, 'utf-8') reparsed = minidom.parseString(rough_string) pretty_xml_as_string = reparsed.toprettyxml(indent=" ") full_pred['boxes'] = rescale(1/scale, full_pred['boxes']) return pretty_xml_as_string # Function to load the models only once and use session state to keep track of it def load_models(): with st.spinner('Loading model...'): model_object = get_faster_rcnn_model(len(object_dict)) model_arrow = get_arrow_model(len(arrow_dict),2) url_arrow = 'https://drive.google.com/uc?id=1xwfvo7BgDWz-1jAiJC1DCF0Wp8YlFNWt' url_object = 'https://drive.google.com/uc?id=1GiM8xOXG6M6r8J9HTOeMJz9NKu7iumZi' # Define paths to save models output_arrow = 'model_arrow.pth' output_object = 'model_object.pth' # Download models using gdown if not Path(output_arrow).exists(): # Download models using gdown gdown.download(url_arrow, output_arrow, quiet=False) else: print('Model arrow downloaded from local') if not Path(output_object).exists(): gdown.download(url_object, output_object, quiet=False) else: print('Model object downloaded from local') # Load models device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_arrow.load_state_dict(torch.load(output_arrow, map_location=device)) model_object.load_state_dict(torch.load(output_object, map_location=device)) st.session_state.model_loaded = True st.session_state.model_arrow = model_arrow st.session_state.model_object = model_object # Function to prepare the image for processing def prepare_image(image, pad=True, new_size=(1333, 1333)): original_size = image.size # Calculate scale to fit the new size while maintaining aspect ratio scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1]) new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale)) # Resize image to new scaled size image = F.resize(image, (new_scaled_size[1], new_scaled_size[0])) if pad: enhancer = ImageEnhance.Brightness(image) image = enhancer.enhance(1.5) # Adjust the brightness if necessary # Pad the resized image to make it exactly the desired size padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]] image = F.pad(image, padding, fill=200, padding_mode='edge') return new_scaled_size, image # Function to display various options for image annotation def display_options(image, score_threshold): col1, col2, col3, col4, col5 = st.columns(5) with col1: write_class = st.toggle("Write Class", value=True) draw_keypoints = st.toggle("Draw Keypoints", value=True) draw_boxes = st.toggle("Draw Boxes", value=True) with col2: draw_text = st.toggle("Draw Text", value=False) write_text = st.toggle("Write Text", value=False) draw_links = st.toggle("Draw Links", value=False) with col3: write_score = st.toggle("Write Score", value=True) write_idx = st.toggle("Write Index", value=False) with col4: # Define options for the dropdown menu dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))] dropdown_options[0] = 'all' selected_option = st.selectbox("Show class", dropdown_options) # Draw the annotated image with selected options annotated_image = draw_stream( np.array(image), prediction=st.session_state.prediction, text_predictions=st.session_state.text_pred, draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text, write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_print=selected_option, score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True ) # Display the original and annotated images side by side image_comparison( img1=annotated_image, img2=image, label1="Annotated Image", label2="Original Image", starting_position=99, width=1000, ) # Function to perform inference on the uploaded image using the loaded models def perform_inference(model_object, model_arrow, image, score_threshold): _, uploaded_image = prepare_image(image, pad=False) img_tensor = F.to_tensor(prepare_image(image.convert('RGB'))[1]) # Display original image if 'image_placeholder' not in st.session_state: image_placeholder = st.empty() # Create an empty placeholder image_placeholder.image(uploaded_image, caption='Original Image', width=1000) # Prediction _, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=0.5) # Perform OCR on the uploaded image ocr_results = text_prediction(uploaded_image) # Filter and map OCR results to prediction results st.session_state.text_pred = filter_text(ocr_results, threshold=0.5) st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=0.5) # Remove the original image display image_placeholder.empty() # Force garbage collection gc.collect() @st.cache_data def get_image(uploaded_file): return Image.open(uploaded_file).convert('RGB') def main(): st.set_page_config(layout="wide") # Add your company logo banner st.image("./images/banner.png", use_column_width=True) # Sidebar content st.sidebar.header("This BPMN AI model recognition is proposed by ELCA in collaboration with EPFL.") st.sidebar.subheader("Instructions:") st.sidebar.text("1. Upload you image") st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)") st.sidebar.text("3. Set the score threshold \n for prediction (default is 0.5)") st.sidebar.text("4. Set the scale for the XML file \n (default is 1.0)") st.sidebar.text("5. Click on 'Launch Prediction'") st.sidebar.subheader("You can close this sidebar") # Set the title of the app st.title("BPMN model recognition demo") # Display current memory usage memory_usage = get_memory_usage() print(f"Current memory usage: {memory_usage:.2f} MB") # Initialize the session state for storing pool bounding boxes if 'pool_bboxes' not in st.session_state: st.session_state.pool_bboxes = [] # Load the models using the defined function if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state: clear_memory() load_models() model_arrow = st.session_state.model_arrow model_object = st.session_state.model_object #Create the layout for the app col1, col2 = st.columns(2) with col1: # Create a file uploader for the user to upload an image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Display the uploaded image if the user has uploaded an image if uploaded_file is not None: with st.spinner('wait for image...'): original_image = get_image(uploaded_file) col1, col2 = st.columns(2) # Create a cropper to allow the user to crop the image and display the cropped image with col1: cropped_image = st_cropper(original_image, realtime_update=True, box_color='#0000FF', should_resize_image=True, default_coords=(30, original_image.size[0]-30, 30, original_image.size[1]-30)) with col2: st.image(cropped_image, caption="Cropped Image", use_column_width=False, width=500) # Display the options for the user to set the score threshold and scale if cropped_image is not None: col1, col2, col3 = st.columns(3) with col1: score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05) with col2: st.session_state.scale = st.slider("Set scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1) # Launch the prediction when the user clicks the button if st.button("Launch Prediction"): st.session_state.crop_image = cropped_image with st.spinner('Processing...'): perform_inference(model_object, model_arrow, st.session_state.crop_image, score_threshold) st.session_state.prediction = modif_box_pos(st.session_state.prediction, object_dict) print('Detection completed!') # If the prediction has been made and the user has uploaded an image, display the options for the user to annotate the image if 'prediction' in st.session_state and uploaded_file is not None: st.success('Detection completed!') display_options(st.session_state.crop_image, score_threshold) #if st.session_state.prediction_up==True: st.session_state.bpmn_xml = create_XML(st.session_state.prediction.copy(), st.session_state.text_mapping, st.session_state.scale) display_bpmn_xml(st.session_state.bpmn_xml) # Force garbage collection after display gc.collect() if __name__ == "__main__": print('Starting the app...') main()