Spaces:
Running
Running
File size: 31,752 Bytes
3b49518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
# Copyright (c) EPFL VILAB.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# Based on timm, DeiT, DINO, MoCo-v3, BEiT, MAE-priv MAE, DPT and ConvNeXt code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# https://github.com/facebookresearch/moco-v3
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/BUPT-PRIV/MAE-priv
# https://github.com/facebookresearch/mae
# https://github.com/isl-org/DPT
# https://github.com/facebookresearch/ConvNeXt
# --------------------------------------------------------
from functools import partial
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from .multimae_utils import (Block, CrossAttention, Mlp,
build_2d_sincos_posemb, pair, trunc_normal_)
from .output_adapter_utils import (ConvNeXtBlock, Interpolate,
make_fusion_block, make_scratch)
class SpatialOutputAdapter(nn.Module):
"""Cross-attention adapter for spatial outputs, like images or feature maps.
:param num_channels: Number of input channels of the image/feature map
:param stride_level: Stride level compared to the full-sized image.
E.g. 4 for 1/4th the size of the image.
:param patch_size_full: Int or tuple of the patch size over the full image size.
Patch size for smaller inputs will be computed accordingly.
:param dim_tokens_enc: Dimension of tokens coming from encoder. Can be set using init method.
:param dim_tokens: Dimension of decoder tokens
:param depth: Number of additional (full self-attention) transformer layers after initial cross attention and MLP
:param learnable_pos_emb: Set to True to learn positional embeddings instead
:param image_size: Default image size. Used to initialize size of positional embeddings.
:param mlp_ratio: MLP hidden dim ratio
:param num_heads: Number of attention heads
:param qkv_bias: Set to True to enable bias
:param drop_rate: Probability of dropping attention layer outputs
:param attn_drop_rate: Probability of dropping attention matrix elements
:param drop_path_rate: DropPath drop rate
:param norm_layer: Type of normalization layer
:param use_task_queries: When set to True, adds task specific tokens from encoder (if available)
to the corresponding query entries
:param task: Task for which encoder tokens are added to the queries of the decoder (e.g. RGB if decoder is used for RGB)
:param context_tasks: Tasks / modalities from the encoder. Used to create learned embeddings for each task.
:param use_xattn: When set to True, attend to the tokens from the encoder through a cross-attention layer
"""
def __init__(self,
num_channels: int,
stride_level: int,
patch_size_full: Union[int, Tuple[int, int]],
dim_tokens_enc: Optional[int] = None,
dim_tokens: int = 256,
depth: int = 0,
learnable_pos_emb: int = False,
image_size: Union[int, Tuple[int]] = 224,
mlp_ratio: int = 4.0,
num_heads: int = 8,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
use_task_queries: bool = True,
task: Optional[str] = None,
context_tasks: Optional[list] = None,
use_xattn: bool = True
):
super().__init__()
self.num_channels = num_channels
self.stride_level = stride_level
self.patch_size_full = pair(patch_size_full)
self.dim_tokens_enc = dim_tokens_enc
self.dim_tokens = dim_tokens
self.learnable_pos_emb = learnable_pos_emb
self.image_size = pair(image_size)
self.use_task_queries = use_task_queries
self.task = task
self.use_xattn = use_xattn
# Actual patch height and width, taking into account stride of input
self.P_H = max(1, self.patch_size_full[0] // stride_level)
self.P_W = max(1, self.patch_size_full[1] // stride_level)
if context_tasks is not None:
self.task_embeddings = nn.ParameterDict(
{task: nn.Parameter(torch.zeros(1, 1, self.dim_tokens)) for task in context_tasks})
for embedding in self.task_embeddings.values():
trunc_normal_(embedding, std=0.02)
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // (self.stride_level * self.P_H)
w_posemb = self.image_size[1] // (self.stride_level * self.P_W)
if not self.learnable_pos_emb:
self.pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=False)
else:
self.pos_emb = nn.Parameter(torch.zeros(1, h_posemb, w_posemb, self.dim_tokens))
trunc_normal_(self.pos_emb, std=0.02)
# One cross attention layer followed by MLP block, an optional transformer, and an output projection
if self.use_xattn:
self.decoder = CrossAttention(
dim=self.dim_tokens, num_heads=num_heads, qkv_bias=qkv_bias,
attn_drop=attn_drop_rate, proj_drop=drop_rate)
self.context_norm = norm_layer(self.dim_tokens)
self.query_norm = norm_layer(self.dim_tokens)
self.out_norm = norm_layer(self.dim_tokens)
mlp_hidden_dim = int(self.dim_tokens * mlp_ratio)
self.mlp = Mlp(in_features=self.dim_tokens, hidden_features=mlp_hidden_dim)
# Optional full self-attention transformer layers
if depth > 0:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.decoder_transformer = nn.Sequential(*[
Block(dim=self.dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
else:
self.decoder_transformer = nn.Identity()
self.dim_patch = self.num_channels * self.P_H * self.P_W
self.out_proj = nn.Linear(self.dim_tokens, self.dim_patch)
if self.dim_tokens_enc is not None:
self.init(dim_tokens_enc=dim_tokens_enc)
def init(self, dim_tokens_enc: int = 768):
'''
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
'''
self.dim_tokens_enc = dim_tokens_enc
# Projection of encoder tokens to the patch dimension
self.proj_context = nn.Linear(self.dim_tokens_enc, self.dim_tokens)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_emb', 'mask_token', 'task_embeddings'}
def generate_context_embeddings(self, input_info,
bs: int,
size: Tuple[int, int],
device: Optional[torch.device] = None):
context_embeddings = []
for task, info in input_info["tasks"].items():
if self.task_embeddings is not None and task in self.task_embeddings:
task_emb = repeat(self.task_embeddings[task], '() () d -> b n d', b=bs, n=info['num_tokens'])
else:
task_emb = torch.zeros((bs, info['num_tokens'], self.dim_tokens), device=device)
if info['has_2d_posemb']:
pos_emb = F.interpolate(self.pos_emb, size=size, mode='bilinear', align_corners=False)
pos_emb = rearrange(pos_emb, 'b d nh nw -> b (nh nw) d')
assert info['num_tokens'] == pos_emb.shape[1]
task_emb = task_emb + pos_emb
context_embeddings.append(task_emb)
context_embeddings = torch.cat(context_embeddings, dim=1)
return context_embeddings
def get_queries_and_context(self, context_tokens, input_info, ids_keep, ids_restore):
B = context_tokens.shape[0]
H, W = input_info['image_size']
# Number of patches in height and width
N_H = H // (self.stride_level * self.P_H)
N_W = W // (self.stride_level * self.P_W)
if 'num_global_tokens' in input_info:
context_tokens_without_global = context_tokens[:, :-input_info['num_global_tokens']]
else:
context_tokens_without_global = context_tokens
# Add mask tokens
mask_tokens = repeat(self.mask_token, '() () d -> b n d', b=B,
n=input_info['num_task_tokens'] - context_tokens_without_global.shape[1])
context_with_mask = torch.cat([context_tokens_without_global, mask_tokens], dim=1)
# Unshuffle context_with_mask
context_with_mask = torch.gather(context_with_mask, dim=1,
index=ids_restore.unsqueeze(-1).repeat(1, 1, context_with_mask.shape[2]))
# Generate context_emb and add them to context
context_emb = self.generate_context_embeddings(input_info=input_info, bs=B, size=(N_H, N_W),
device=context_tokens.device)
context_with_mask = context_with_mask + context_emb
# Generate queries
if self.use_task_queries and self.task in input_info['tasks']:
start_idx = input_info['tasks'][self.task]['start_idx']
end_idx = input_info['tasks'][self.task]['end_idx']
queries = context_with_mask[:, start_idx:end_idx]
else:
queries = repeat(self.mask_token, '() () d -> b n d', b=B, n=N_H * N_W)
queries_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bilinear', align_corners=False)
queries_pos_emb = rearrange(queries_pos_emb, 'b d nh nw -> b (nh nw) d')
queries = queries + queries_pos_emb
if self.task_embeddings is not None and self.task in self.task_embeddings:
queries_task_emb = repeat(self.task_embeddings[self.task], '() () d -> b n d', b=B, n=N_H * N_W)
queries = queries + queries_task_emb
# Unshuffle context and keep only initial context (yes, again)
context_tokens_without_global = torch.gather(context_with_mask, dim=1,
index=ids_keep.unsqueeze(-1).repeat(1, 1, context_with_mask.shape[2]))
# Add back global tokens
if 'num_global_tokens' in input_info:
context_tokens = torch.cat(
[context_tokens_without_global, context_tokens[:, -input_info['num_global_tokens']:]], dim=1)
else:
context_tokens = context_tokens_without_global
return queries, context_tokens
def forward(self,
encoder_tokens: torch.Tensor,
input_info: Dict,
ids_keep: torch.Tensor,
ids_restore: torch.Tensor,
):
"""
Forward pass taking output tokens from encoder and optionally a subset of them corresponding
to this output adapter's task (needs an additional mask describing position of these tokens in the queries).
:param encoder_tokens: Output of encoder
:param input_info: Dictionary with information about the input modalities
:param ids_keep: IDs of unmasked tokens (tokens given to the encoder)
:param ids_restore: IDs to unshuffle tokens
"""
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
H, W = input_info['image_size']
# Number of patches in height and width
N_H = H // (self.stride_level * self.P_H)
N_W = W // (self.stride_level * self.P_W)
# Project encoder tokens to decoder tokens
context_tokens = self.proj_context(encoder_tokens)
# Get queries and context
queries, context_tokens = self.get_queries_and_context(context_tokens, input_info, ids_keep, ids_restore)
# Perform cross attention of queries to context tokens, followed by an MLP
if self.use_xattn:
x = self.decoder(self.query_norm(queries), self.context_norm(context_tokens))
x = x + self.mlp(self.out_norm(x))
else:
x = queries
# Optional transformer layers if depth > 0
x = self.decoder_transformer(x)
# Project each token to (C * P_H * P_W)
x = self.out_proj(x)
# Reshape sequence of patches into image
x = rearrange(
x, 'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
nh=N_H, nw=N_W, ph=self.P_H, pw=self.P_W, c=self.num_channels
)
return x
class LinearOutputAdapter(nn.Module):
"""
Linear output adapter.
:param num_classes: Number of classes
:param dim_tokens_enc: Dimension of tokens from the encoder
:param use_mean_pooling: When set to True, uses mean pooling before linear classification head.
Otherwise, use last token (usually the global token)
:param norm_layer: Normalization layer
:param init_scale: Initialization scale for linear classification head
"""
def __init__(self,
num_classes: int,
dim_tokens_enc: Optional[int] = None,
use_mean_pooling: bool = True,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
init_scale: float = 1.0):
super().__init__()
self.num_classes = num_classes
self.dim_tokens_enc = dim_tokens_enc
self.use_mean_pooling = use_mean_pooling
self.norm_layer = norm_layer
self.init_scale = init_scale
if self.dim_tokens_enc is not None:
self.init(dim_tokens_enc=dim_tokens_enc)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.dim_tokens_enc = dim_tokens_enc
self.norm = self.norm_layer(self.dim_tokens_enc)
self.head = nn.Linear(dim_tokens_enc, self.num_classes) if self.num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
self.head.weight.data.mul_(self.init_scale)
self.head.bias.data.mul_(self.init_scale)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.init(dim_tokens_enc=self.dim_tokens_enc)
def forward(self,
encoder_tokens: torch.Tensor,
**kwargs):
if self.use_mean_pooling:
x = encoder_tokens.mean(1)
else:
# Global token is added at the end
x = encoder_tokens[:, -1]
x = self.head(self.norm(x))
return x
class SegmenterMaskTransformerAdapter(nn.Module):
"""Output adapter inspired by the Segmenter-Mask architecture
This head is the implementation of `Segmenter: <https://arxiv.org/abs/2105.05633>`_.
:param num_classes: Number of classes
:param depth: Depth of decoder
:param num_heads: Number of attention heads
:param embed_dim: Dimension of decoder tokens
:param mlp_ratio: MLP hidden dim ratio
:param drop_path_rate: DropPath drop rate
:param drop_rate: Dropout after MLPs and Attention
:param attn_drop_rate: Attention matrix drop rate
:param qkv_bias: Set to False to disable bias
:param main_tasks: Tasks to use for the adapter. Only tokens coming from these tasks are kept.
:param patch_size: Size of patches
:param norm_layer: Type of normalization layer
"""
def __init__(
self,
num_classes,
depth: int = 2,
num_heads: int = 12,
embed_dim: int = 768,
mlp_ratio=4,
drop_path_rate=0.1,
drop_rate=0.0,
attn_drop_rate=0.0,
qkv_bias=True,
main_tasks: str = ('rgb',),
patch_size: int = 16,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
**kwargs,
):
super().__init__()
self.main_tasks = main_tasks
self.patch_size = patch_size
self.embed_dim = embed_dim
self.num_classes = num_classes
self.cls_emb = nn.Parameter(torch.zeros(1, num_classes, embed_dim))
trunc_normal_(self.cls_emb, std=0.02)
self.patch_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.classes_proj = nn.Linear(embed_dim, embed_dim, bias=False)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList([
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
self.decoder_norm = norm_layer(embed_dim)
self.mask_norm = norm_layer(num_classes)
self.apply(self._init_weights)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.in_channels = dim_tokens_enc * len(self.main_tasks)
# Projection of encoder tokens to the patch dimension
self.proj_dec = nn.Linear(self.in_channels, self.embed_dim)
self._init_weights(self.proj_dec)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def adapt_tokens(self, encoder_tokens, input_info):
# Adapt tokens
x = []
for task in self.main_tasks:
start_idx = input_info['tasks'][task]['start_idx']
end_idx = input_info['tasks'][task]['end_idx']
x.append(encoder_tokens[:, start_idx:end_idx])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: torch.Tensor, input_info: Dict):
H, W = input_info['image_size']
N_H, N_W = H // self.patch_size, W // self.patch_size
x = self.adapt_tokens(encoder_tokens, input_info)
x = self.proj_dec(x)
cls_emb = self.cls_emb.expand(x.shape[0], -1, -1)
x = torch.cat((x, cls_emb), 1)
for blk in self.blocks:
x = blk(x)
x = self.decoder_norm(x)
patches = self.patch_proj(x[:, :-self.num_classes])
cls_seg_feat = self.classes_proj(x[:, -self.num_classes:])
patches = F.normalize(patches, dim=2, p=2)
cls_seg_feat = F.normalize(cls_seg_feat, dim=2, p=2)
masks = patches @ cls_seg_feat.transpose(1, 2)
masks = self.mask_norm(masks)
masks = rearrange(masks, "b (nh nw) c -> b c nh nw", nh=N_H, nw=N_W)
# Interpolate to semseg res
masks = F.interpolate(masks, size=(H, W), mode="bilinear")
return masks
class ConvNeXtAdapter(nn.Module):
"""Output adapter with ConvNext blocks for semantic segmentation
:param num_classes: Number of classes
:param num_heads: Number of attention heads
:param embed_dim: Token dimension after projection, and before reshaping operation.
:param preds_per_patch: Increases size of feature map by reshaping each patch Each patch gets reshaped
from embed_dim x 1 x 1 to (embed_dim / preds_per_patch) x (preds_per_patch ** 0.5) x (preds_per_patch ** 0.5)
:param main_tasks: Tasks to use for the adapter. Only tokens coming from these tasks are kept.
:param patch_size: Size of patches
:param depth: Number of ConvNeXt blocks
:interpolate_mode: Interpolation mode for final upsampling
"""
def __init__(
self,
num_classes,
embed_dim: int = 6144,
preds_per_patch: int = 16,
main_tasks: Iterable[str] = ('rgb',),
patch_size: int = 16,
depth: int = 4,
interpolate_mode: str = 'bilinear',
**kwargs,
):
super().__init__()
self.main_tasks = main_tasks
self.patch_size = patch_size
self.embed_dim = embed_dim
self.preds_per_patch = preds_per_patch
self.class_dim = embed_dim // preds_per_patch
self.num_classes = num_classes
self.interpolate_mode = interpolate_mode
self.blocks = nn.Sequential(*[
ConvNeXtBlock(dim=self.class_dim)
for _ in range(depth)
])
self.final_layer = nn.Conv2d(self.class_dim, self.num_classes, 1)
self.apply(self._init_weights)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.in_channels = dim_tokens_enc * len(self.main_tasks)
# Projection of encoder tokens to the patch dimension
self.proj_dec = nn.Linear(self.in_channels, self.embed_dim)
self._init_weights(self.proj_dec)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def adapt_tokens(self, encoder_tokens, input_info):
# Adapt tokens
x = []
for task in self.main_tasks:
start_idx = input_info['tasks'][task]['start_idx']
end_idx = input_info['tasks'][task]['end_idx']
x.append(encoder_tokens[:, start_idx:end_idx])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: torch.Tensor, input_info: Dict):
H, W = input_info['image_size']
N_H, N_W = H // self.patch_size, W // self.patch_size
x = self.adapt_tokens(encoder_tokens, input_info)
x = self.proj_dec(x)
x = rearrange(x, "b n (p c) -> b (n p) c", n=N_H * N_W, p=self.preds_per_patch, c=self.class_dim)
x = rearrange(x, "b (nh nw ph pw) c -> b c (nh ph) (nw pw)",
nh=N_H, nw=N_W,
ph=int(self.preds_per_patch ** 0.5),
pw=int(self.preds_per_patch ** 0.5))
x = self.blocks(x)
x = self.final_layer(x)
# Interpolate to semseg res
x = F.interpolate(x, size=(H, W), mode=self.interpolate_mode)
return x
class DPTOutputAdapter(nn.Module):
"""DPT output adapter.
:param num_classes: Number of output channels
:param stride_level: tride level compared to the full-sized image.
E.g. 4 for 1/4th the size of the image.
:param patch_size_full: Int or tuple of the patch size over the full image size.
Patch size for smaller inputs will be computed accordingly.
:param hooks: Index of intermediate layers
:param layer_dims: Dimension of intermediate layers
:param feature_dim: Feature dimension
:param use_bn: If set to True, activates batch norm
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
def __init__(self,
num_classes: int = 3,
stride_level: int = 1,
patch_size: Union[int, Tuple[int, int]] = 16,
main_tasks: Iterable[str] = ('rgb',),
hooks: List[int] = [2, 5, 8, 11],
layer_dims: List[int] = [96, 192, 384, 768],
feature_dim: int = 256,
use_bn: bool = False,
dim_tokens_enc: Optional[int] = None,
head_type: str = 'regression',
**kwargs):
super().__init__()
self.num_channels = num_classes
self.stride_level = stride_level
self.patch_size = pair(patch_size)
self.main_tasks = main_tasks
self.hooks = hooks
self.layer_dims = layer_dims
self.feature_dim = feature_dim
self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None
self.head_type = head_type
# Actual patch height and width, taking into account stride of input
self.P_H = max(1, self.patch_size[0] // stride_level)
self.P_W = max(1, self.patch_size[1] // stride_level)
self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False)
self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn)
self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn)
self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn)
self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn)
if self.head_type == 'regression':
# The "DPTDepthModel" head
self.head = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(feature_dim // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, self.num_channels, kernel_size=1, stride=1, padding=0)
)
elif self.head_type == 'semseg':
# The "DPTSegmentationModel" head
self.head = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(),
nn.ReLU(True),
nn.Dropout(0.1, False),
nn.Conv2d(feature_dim, self.num_channels, kernel_size=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
)
else:
raise ValueError('DPT head_type must be "regression" or "semseg".')
if self.dim_tokens_enc is not None:
self.init(dim_tokens_enc=dim_tokens_enc)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks)
# Set up activation postprocessing layers
self.act_1_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc,
out_channels=self.layer_dims[0],
kernel_size=1, stride=1, padding=0,
),
nn.ConvTranspose2d(
in_channels=self.layer_dims[0],
out_channels=self.layer_dims[0],
kernel_size=4, stride=4, padding=0,
bias=True, dilation=1, groups=1,
)
)
self.act_2_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc,
out_channels=self.layer_dims[1],
kernel_size=1, stride=1, padding=0,
),
nn.ConvTranspose2d(
in_channels=self.layer_dims[1],
out_channels=self.layer_dims[1],
kernel_size=2, stride=2, padding=0,
bias=True, dilation=1, groups=1,
)
)
self.act_3_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc,
out_channels=self.layer_dims[2],
kernel_size=1, stride=1, padding=0,
)
)
self.act_4_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc,
out_channels=self.layer_dims[3],
kernel_size=1, stride=1, padding=0,
),
nn.Conv2d(
in_channels=self.layer_dims[3],
out_channels=self.layer_dims[3],
kernel_size=3, stride=2, padding=1,
)
)
self.act_postprocess = nn.ModuleList([
self.act_1_postprocess,
self.act_2_postprocess,
self.act_3_postprocess,
self.act_4_postprocess
])
def adapt_tokens(self, encoder_tokens, input_info):
# Adapt tokens
x = []
for task in self.main_tasks:
start_idx = input_info['tasks'][task]['start_idx']
end_idx = input_info['tasks'][task]['end_idx']
x.append(encoder_tokens[:, start_idx:end_idx])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: List[torch.Tensor], input_info: Dict):
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
H, W = input_info['image_size']
# Number of patches in height and width
N_H = H // (self.stride_level * self.P_H)
N_W = W // (self.stride_level * self.P_W)
# Hook decoder onto 4 layers from specified ViT layers
layers = [encoder_tokens[hook] for hook in self.hooks]
# Extract only task-relevant tokens and ignore global tokens.
layers = [self.adapt_tokens(l, input_info) for l in layers]
# Reshape tokens to spatial representation
layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers]
# Postprocess activations
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
# Project layers to chosen feature dim
layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
# Fuse layers using refinement stages
path_4 = self.scratch.refinenet4(layers[3])
path_3 = self.scratch.refinenet3(path_4, layers[2])
path_2 = self.scratch.refinenet2(path_3, layers[1])
path_1 = self.scratch.refinenet1(path_2, layers[0])
# Output head
out = self.head(path_1)
return out
|