Spaces:
Building
Building
File size: 23,463 Bytes
c6827c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
from typing import Dict, List, Optional, Tuple, Union
import torch
import torchvision
from torch import nn, Tensor
from torchvision import ops
from torchvision.transforms import functional as F, InterpolationMode, transforms as T
def _flip_coco_person_keypoints(kps, width):
flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
flipped_data = kps[:, flip_inds]
flipped_data[..., 0] = width - flipped_data[..., 0]
# Maintain COCO convention that if visibility == 0, then x, y = 0
inds = flipped_data[..., 2] == 0
flipped_data[inds] = 0
return flipped_data
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class ToTensor(object):
def __call__(self, image, target):
image = F.to_tensor(image)
return image, target
class RandomHorizontalFlip(T.RandomHorizontalFlip):
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if torch.rand(1) < self.p:
image = F.hflip(image)
if target is not None:
_, _, width = F.get_dimensions(image)
target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]]
if "masks" in target:
target["masks"] = target["masks"].flip(-1)
if "keypoints" in target:
keypoints = target["keypoints"]
keypoints = _flip_coco_person_keypoints(keypoints, width)
target["keypoints"] = keypoints
return image, target
class PILToTensor(nn.Module):
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.pil_to_tensor(image)
return image, target
class ConvertImageDtype(nn.Module):
def __init__(self, dtype: torch.dtype) -> None:
super().__init__()
self.dtype = dtype
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.convert_image_dtype(image, self.dtype)
return image, target
class RandomIoUCrop(nn.Module):
def __init__(
self,
min_scale: float = 0.3,
max_scale: float = 1.0,
min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2.0,
sampler_options: Optional[List[float]] = None,
trials: int = 40,
):
super().__init__()
# Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
self.min_scale = min_scale
self.max_scale = max_scale
self.min_aspect_ratio = min_aspect_ratio
self.max_aspect_ratio = max_aspect_ratio
if sampler_options is None:
sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
self.options = sampler_options
self.trials = trials
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if target is None:
raise ValueError("The targets can't be None for this transform.")
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.")
elif image.ndimension() == 2:
image = image.unsqueeze(0)
_, orig_h, orig_w = F.get_dimensions(image)
while True:
# sample an option
idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
min_jaccard_overlap = self.options[idx]
if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option
return image, target
for _ in range(self.trials):
# check the aspect ratio limitations
r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
new_w = int(orig_w * r[0])
new_h = int(orig_h * r[1])
aspect_ratio = new_w / new_h
if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
continue
# check for 0 area crops
r = torch.rand(2)
left = int((orig_w - new_w) * r[0])
top = int((orig_h - new_h) * r[1])
right = left + new_w
bottom = top + new_h
if left == right or top == bottom:
continue
# check for any valid boxes with centers within the crop area
cx = 0.5 * (target["boxes"][:, 0] + target["boxes"][:, 2])
cy = 0.5 * (target["boxes"][:, 1] + target["boxes"][:, 3])
is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
if not is_within_crop_area.any():
continue
# check at least 1 box with jaccard limitations
boxes = target["boxes"][is_within_crop_area]
ious = torchvision.ops.boxes.box_iou(
boxes, torch.tensor([[left, top, right, bottom]], dtype=boxes.dtype, device=boxes.device)
)
if ious.max() < min_jaccard_overlap:
continue
# keep only valid boxes and perform cropping
target["boxes"] = boxes
target["labels"] = target["labels"][is_within_crop_area]
target["boxes"][:, 0::2] -= left
target["boxes"][:, 1::2] -= top
target["boxes"][:, 0::2].clamp_(min=0, max=new_w)
target["boxes"][:, 1::2].clamp_(min=0, max=new_h)
image = F.crop(image, top, left, new_h, new_w)
return image, target
class RandomZoomOut(nn.Module):
def __init__(
self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5
):
super().__init__()
if fill is None:
fill = [0.0, 0.0, 0.0]
self.fill = fill
self.side_range = side_range
if side_range[0] < 1.0 or side_range[0] > side_range[1]:
raise ValueError(f"Invalid canvas side range provided {side_range}.")
self.p = p
@torch.jit.unused
def _get_fill_value(self, is_pil):
# type: (bool) -> int
# We fake the type to make it work on JIT
return tuple(int(x) for x in self.fill) if is_pil else 0
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.")
elif image.ndimension() == 2:
image = image.unsqueeze(0)
if torch.rand(1) >= self.p:
return image, target
_, orig_h, orig_w = F.get_dimensions(image)
r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
canvas_width = int(orig_w * r)
canvas_height = int(orig_h * r)
r = torch.rand(2)
left = int((canvas_width - orig_w) * r[0])
top = int((canvas_height - orig_h) * r[1])
right = canvas_width - (left + orig_w)
bottom = canvas_height - (top + orig_h)
if torch.jit.is_scripting():
fill = 0
else:
fill = self._get_fill_value(F._is_pil_image(image))
image = F.pad(image, [left, top, right, bottom], fill=fill)
if isinstance(image, torch.Tensor):
# PyTorch's pad supports only integers on fill. So we need to overwrite the colour
v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1)
image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h) :, :] = image[
..., :, (left + orig_w) :
] = v
if target is not None:
target["boxes"][:, 0::2] += left
target["boxes"][:, 1::2] += top
return image, target
class RandomPhotometricDistort(nn.Module):
def __init__(
self,
contrast: Tuple[float, float] = (0.5, 1.5),
saturation: Tuple[float, float] = (0.5, 1.5),
hue: Tuple[float, float] = (-0.05, 0.05),
brightness: Tuple[float, float] = (0.875, 1.125),
p: float = 0.5,
):
super().__init__()
self._brightness = T.ColorJitter(brightness=brightness)
self._contrast = T.ColorJitter(contrast=contrast)
self._hue = T.ColorJitter(hue=hue)
self._saturation = T.ColorJitter(saturation=saturation)
self.p = p
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.")
elif image.ndimension() == 2:
image = image.unsqueeze(0)
r = torch.rand(7)
if r[0] < self.p:
image = self._brightness(image)
contrast_before = r[1] < 0.5
if contrast_before:
if r[2] < self.p:
image = self._contrast(image)
if r[3] < self.p:
image = self._saturation(image)
if r[4] < self.p:
image = self._hue(image)
if not contrast_before:
if r[5] < self.p:
image = self._contrast(image)
if r[6] < self.p:
channels, _, _ = F.get_dimensions(image)
permutation = torch.randperm(channels)
is_pil = F._is_pil_image(image)
if is_pil:
image = F.pil_to_tensor(image)
image = F.convert_image_dtype(image)
image = image[..., permutation, :, :]
if is_pil:
image = F.to_pil_image(image)
return image, target
class ScaleJitter(nn.Module):
"""Randomly resizes the image and its bounding boxes within the specified scale range.
The class implements the Scale Jitter augmentation as described in the paper
`"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_.
Args:
target_size (tuple of ints): The target size for the transform provided in (height, weight) format.
scale_range (tuple of ints): scaling factor interval, e.g (a, b), then scale is randomly sampled from the
range a <= scale <= b.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
"""
def __init__(
self,
target_size: Tuple[int, int],
scale_range: Tuple[float, float] = (0.1, 2.0),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
):
super().__init__()
self.target_size = target_size
self.scale_range = scale_range
self.interpolation = interpolation
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.")
elif image.ndimension() == 2:
image = image.unsqueeze(0)
_, orig_height, orig_width = F.get_dimensions(image)
scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale
new_width = int(orig_width * r)
new_height = int(orig_height * r)
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation)
if target is not None:
target["boxes"][:, 0::2] *= new_width / orig_width
target["boxes"][:, 1::2] *= new_height / orig_height
if "masks" in target:
target["masks"] = F.resize(
target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST
)
return image, target
class FixedSizeCrop(nn.Module):
def __init__(self, size, fill=0, padding_mode="constant"):
super().__init__()
size = tuple(T._setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill # TODO: Fill is currently respected only on PIL. Apply tensor patch.
self.padding_mode = padding_mode
def _pad(self, img, target, padding):
# Taken from the functional_tensor.py pad
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
elif len(padding) == 1:
pad_left = pad_right = pad_top = pad_bottom = padding[0]
elif len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
else:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
padding = [pad_left, pad_top, pad_right, pad_bottom]
img = F.pad(img, padding, self.fill, self.padding_mode)
if target is not None:
target["boxes"][:, 0::2] += pad_left
target["boxes"][:, 1::2] += pad_top
if "masks" in target:
target["masks"] = F.pad(target["masks"], padding, 0, "constant")
return img, target
def _crop(self, img, target, top, left, height, width):
img = F.crop(img, top, left, height, width)
if target is not None:
boxes = target["boxes"]
boxes[:, 0::2] -= left
boxes[:, 1::2] -= top
boxes[:, 0::2].clamp_(min=0, max=width)
boxes[:, 1::2].clamp_(min=0, max=height)
is_valid = (boxes[:, 0] < boxes[:, 2]) & (boxes[:, 1] < boxes[:, 3])
target["boxes"] = boxes[is_valid]
target["labels"] = target["labels"][is_valid]
if "masks" in target:
target["masks"] = F.crop(target["masks"][is_valid], top, left, height, width)
return img, target
def forward(self, img, target=None):
_, height, width = F.get_dimensions(img)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)
if new_height != height or new_width != width:
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)
r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)
img, target = self._crop(img, target, top, left, new_height, new_width)
pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
if pad_bottom != 0 or pad_right != 0:
img, target = self._pad(img, target, [0, 0, pad_right, pad_bottom])
return img, target
class RandomShortestSize(nn.Module):
def __init__(
self,
min_size: Union[List[int], Tuple[int], int],
max_size: int,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
):
super().__init__()
self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
self.max_size = max_size
self.interpolation = interpolation
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
_, orig_height, orig_width = F.get_dimensions(image)
min_size = self.min_size[torch.randint(len(self.min_size), (1,)).item()]
r = min(min_size / min(orig_height, orig_width), self.max_size / max(orig_height, orig_width))
new_width = int(orig_width * r)
new_height = int(orig_height * r)
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation)
if target is not None:
target["boxes"][:, 0::2] *= new_width / orig_width
target["boxes"][:, 1::2] *= new_height / orig_height
if "masks" in target:
target["masks"] = F.resize(
target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST
)
return image, target
def _copy_paste(
image: torch.Tensor,
target: Dict[str, Tensor],
paste_image: torch.Tensor,
paste_target: Dict[str, Tensor],
blending: bool = True,
resize_interpolation: F.InterpolationMode = F.InterpolationMode.BILINEAR,
) -> Tuple[torch.Tensor, Dict[str, Tensor]]:
# Random paste targets selection:
num_masks = len(paste_target["masks"])
if num_masks < 1:
# Such degerante case with num_masks=0 can happen with LSJ
# Let's just return (image, target)
return image, target
# We have to please torch script by explicitly specifying dtype as torch.long
random_selection = torch.randint(0, num_masks, (num_masks,), device=paste_image.device)
random_selection = torch.unique(random_selection).to(torch.long)
paste_masks = paste_target["masks"][random_selection]
paste_boxes = paste_target["boxes"][random_selection]
paste_labels = paste_target["labels"][random_selection]
masks = target["masks"]
# We resize source and paste data if they have different sizes
# This is something we introduced here as originally the algorithm works
# on equal-sized data (for example, coming from LSJ data augmentations)
size1 = image.shape[-2:]
size2 = paste_image.shape[-2:]
if size1 != size2:
paste_image = F.resize(paste_image, size1, interpolation=resize_interpolation)
paste_masks = F.resize(paste_masks, size1, interpolation=F.InterpolationMode.NEAREST)
# resize bboxes:
ratios = torch.tensor((size1[1] / size2[1], size1[0] / size2[0]), device=paste_boxes.device)
paste_boxes = paste_boxes.view(-1, 2, 2).mul(ratios).view(paste_boxes.shape)
paste_alpha_mask = paste_masks.sum(dim=0) > 0
if blending:
paste_alpha_mask = F.gaussian_blur(
paste_alpha_mask.unsqueeze(0),
kernel_size=(5, 5),
sigma=[
2.0,
],
)
# Copy-paste images:
image = (image * (~paste_alpha_mask)) + (paste_image * paste_alpha_mask)
# Copy-paste masks:
masks = masks * (~paste_alpha_mask)
non_all_zero_masks = masks.sum((-1, -2)) > 0
masks = masks[non_all_zero_masks]
# Do a shallow copy of the target dict
out_target = {k: v for k, v in target.items()}
out_target["masks"] = torch.cat([masks, paste_masks])
# Copy-paste boxes and labels
boxes = ops.masks_to_boxes(masks)
out_target["boxes"] = torch.cat([boxes, paste_boxes])
labels = target["labels"][non_all_zero_masks]
out_target["labels"] = torch.cat([labels, paste_labels])
# Update additional optional keys: area and iscrowd if exist
if "area" in target:
out_target["area"] = out_target["masks"].sum((-1, -2)).to(torch.float32)
if "iscrowd" in target and "iscrowd" in paste_target:
# target['iscrowd'] size can be differ from mask size (non_all_zero_masks)
# For example, if previous transforms geometrically modifies masks/boxes/labels but
# does not update "iscrowd"
if len(target["iscrowd"]) == len(non_all_zero_masks):
iscrowd = target["iscrowd"][non_all_zero_masks]
paste_iscrowd = paste_target["iscrowd"][random_selection]
out_target["iscrowd"] = torch.cat([iscrowd, paste_iscrowd])
# Check for degenerated boxes and remove them
boxes = out_target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
valid_targets = ~degenerate_boxes.any(dim=1)
out_target["boxes"] = boxes[valid_targets]
out_target["masks"] = out_target["masks"][valid_targets]
out_target["labels"] = out_target["labels"][valid_targets]
if "area" in out_target:
out_target["area"] = out_target["area"][valid_targets]
if "iscrowd" in out_target and len(out_target["iscrowd"]) == len(valid_targets):
out_target["iscrowd"] = out_target["iscrowd"][valid_targets]
return image, out_target
class SimpleCopyPaste(torch.nn.Module):
def __init__(self, blending=True, resize_interpolation=F.InterpolationMode.BILINEAR):
super().__init__()
self.resize_interpolation = resize_interpolation
self.blending = blending
def forward(
self, images: List[torch.Tensor], targets: List[Dict[str, Tensor]]
) -> Tuple[List[torch.Tensor], List[Dict[str, Tensor]]]:
torch._assert(
isinstance(images, (list, tuple)) and all([isinstance(v, torch.Tensor) for v in images]),
"images should be a list of tensors",
)
torch._assert(
isinstance(targets, (list, tuple)) and len(images) == len(targets),
"targets should be a list of the same size as images",
)
for target in targets:
# Can not check for instance type dict with inside torch.jit.script
# torch._assert(isinstance(target, dict), "targets item should be a dict")
for k in ["masks", "boxes", "labels"]:
torch._assert(k in target, f"Key {k} should be present in targets")
torch._assert(isinstance(target[k], torch.Tensor), f"Value for the key {k} should be a tensor")
# images = [t1, t2, ..., tN]
# Let's define paste_images as shifted list of input images
# paste_images = [t2, t3, ..., tN, t1]
# FYI: in TF they mix data on the dataset level
images_rolled = images[-1:] + images[:-1]
targets_rolled = targets[-1:] + targets[:-1]
output_images: List[torch.Tensor] = []
output_targets: List[Dict[str, Tensor]] = []
for image, target, paste_image, paste_target in zip(images, targets, images_rolled, targets_rolled):
output_image, output_data = _copy_paste(
image,
target,
paste_image,
paste_target,
blending=self.blending,
resize_interpolation=self.resize_interpolation,
)
output_images.append(output_image)
output_targets.append(output_data)
return output_images, output_targets
def __repr__(self) -> str:
s = f"{self.__class__.__name__}(blending={self.blending}, resize_interpolation={self.resize_interpolation})"
return s |