Spaces:
Build error
Build error
File size: 7,935 Bytes
7d1b388 4e75a1b 7d1b388 4b77ec3 7d1b388 0107ad0 7d1b388 4b77ec3 7d1b388 0107ad0 8fd8732 0107ad0 7d1b388 0107ad0 7d1b388 4b77ec3 7d1b388 0107ad0 7d1b388 0107ad0 7d1b388 0107ad0 7d1b388 8fd8732 a22ad4d 8fd8732 0107ad0 f888310 7d1b388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import numpy as np
import onnxruntime
import onnx
import gradio as gr
import requests
import json
from extractnet import Extractor
import math
from transformers import AutoTokenizer
import spacy
import os
from transformers import pipeline
import itertools
MODEL_TRANSFORMER_BASED = "distilbert-base-uncased"
MODEL_ONNX_FNAME = "ESG_classifier_batch.onnx"
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
#MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
#API_HF_SENTIMENT_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_outputs=10):
nlp = spacy.load("en_pipeline")
doc = nlp(text)
spans = doc.spans["sc"]
comp_raw_text = dict( sorted( dict(zip([str(x) for x in spans],[float(x)*penalty for x in spans.attrs['scores']])).items(), key=lambda x: x[1], reverse=True) )
doc = nlp(summary)
spans = doc.spans["sc"]
exceeds_one = 0.0
for comp_s in spans:
if str(comp_s) in comp_raw_text.keys():
comp_raw_text[str(comp_s)] = comp_raw_text[str(comp_s)] / penalty
temp_max = comp_raw_text[str(comp_s)]if comp_raw_text[str(comp_s)] > 1.0 else 0.0
exceeds_one = comp_raw_text[str(comp_s)] if temp_max > exceeds_one else exceeds_one
#This "exceeds_one" is a bit confusing. So the thing is that the penalty is reverted for each time the company appears in the summary and hence the value can exceed one when the company appears more than once. The normalisation means that all the other scores are divided by the maximum when any value exceeds one
if normalise and (exceeds_one > 1):
comp_raw_text = {k: v/exceeds_one for k, v in comp_raw_text.items()}
return dict(itertools.islice(sorted(comp_raw_text.items(), key=lambda x: x[1], reverse=True), limit_outputs))
#def _inference_summary_model_pipeline(text):
# pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS)
# return pipe(text,truncation='longest_first')
def _inference_sentiment_model_pipeline(text):
tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'}
pipe = pipeline("sentiment-analysis", model=MODEL_SENTIMENT_ANALYSIS )
return pipe(text,**tokenizer_kwargs)
#def _inference_sentiment_model_via_api_query(payload):
# response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload)
# return response.json()
def _lematise_text(text):
nlp = spacy.load("en_core_web_sm", disable=['ner'])
text_out = []
for doc in nlp.pipe(text): #see https://spacy.io/models#design
new_text = ""
for token in doc:
if (not token.is_punct
and not token.is_stop
and not token.like_url
and not token.is_space
and not token.like_email
#and not token.like_num
and not token.pos_ == "CONJ"):
new_text = new_text + " " + token.lemma_
text_out.append( new_text )
return text_out
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def is_in_archive(url):
try:
r = requests.get('http://archive.org/wayback/available?url='+url)
archive = json.loads(r.text)
if archive['archived_snapshots'] :
archive['archived_snapshots']['closest']
return {'archived':archive['archived_snapshots']['closest']['available'], 'url':archive['archived_snapshots']['closest']['url'],'error':0}
else:
return {'archived':False, 'url':"", 'error':0}
except:
print(f"[E] Quering URL ({url}) from archive.org")
return {'archived':False, 'url':"", 'error':-1}
#def _inference_ner(text):
# return labels
def _inference_classifier(text):
tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED)
inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only!
ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME)
onnx_model = onnx.load(MODEL_ONNX_FNAME)
onnx.checker.check_model(onnx_model)
# compute ONNX Runtime output prediction
ort_outs = ort_session.run(None, input_feed=dict(inputs))
return sigmoid(ort_outs[0])
def inference(input_batch,isurl,use_archive,limit_companies=10):
input_batch_content = []
if isurl:
for url in input_batch:
if use_archive:
archive = is_in_archive(url)
if archive['archived']:
url = archive['url']
#Extract the data from url
extracted = Extractor().extract(requests.get(url).text)
input_batch_content.append(extracted['content'])
else:
input_batch_content = input_batch
prob_outs = _inference_classifier(input_batch_content)
#sentiment = _inference_sentiment_model_via_api_query({"inputs": extracted['content']})
#sentiment = _inference_sentiment_model_pipeline(input_batch_content )[0]
#summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text']
#ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies)
return prob_outs #ner_labels, {'E':float(prob_outs[0]),"S":float(prob_outs[1]),"G":float(prob_outs[2])},{sentiment['label']:float(sentiment['score'])},"**Summary:**\n\n" + summary
title = "ESG API Demo"
description = """This is a demonstration of the full ESG pipeline backend where given a URL (english, news) the news contents are extracted, using extractnet, and fed to three models:
- An off-the-shelf sentiment classification model (ProsusAI/finbert)
- A custom NER for the company extraction
- A custom ESG classifier for the ESG labeling of the news (the extracted text is also lemmatised prior to be fed to this classifier)
API input parameters:
- URL: text. Url of the news (english)
- `use_archive`: boolean. The model will extract the archived version in archive.org of the url indicated. This is useful with old news and to bypass news behind paywall
- `limit_companies`: integer. Number of found relevant companies to report.
"""
examples = [[['https://www.bbc.com/news/uk-62732447',
'https://www.bbc.com/news/business-62747401',
'https://www.bbc.com/news/technology-62744858',
'https://www.bbc.com/news/science-environment-62758811',
'https://www.theguardian.com/business/2022/sep/02/nord-stream-1-gazprom-announces-indefinite-shutdown-of-pipeline',
'https://www.bbc.com/news/world-europe-62766867',
'https://www.bbc.com/news/business-62524031',
'https://www.bbc.com/news/business-62728621',
'https://www.bbc.com/news/science-environment-62680423'],'url',False,5]]
demo = gr.Interface(fn=inference,
inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True),
gr.Dropdown(label='data type', choices=['text','url'], type='index'),
gr.Checkbox(label='if url parse cached in archive.org'),
gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output')],
outputs=[gr.Dataframe(label='output raw', col_count=1, datatype='number', type='array', wrap=True)],
#gr.Label(label='Company'),
#gr.Label(label='ESG'),
#gr.Label(label='Sentiment'),
#gr.Markdown()],
title=title,
description=description,
examples=examples)
demo.launch()
|