|
import math |
|
import numpy as np |
|
from einops import repeat |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
if not repeat_only: |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
else: |
|
embedding = repeat(timesteps, "b -> b d", d=dim) |
|
return embedding |
|
|
|
|
|
def make_beta_schedule( |
|
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 |
|
): |
|
if schedule == "linear": |
|
betas = ( |
|
torch.linspace( |
|
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 |
|
) |
|
** 2 |
|
) |
|
|
|
elif schedule == "cosine": |
|
timesteps = ( |
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s |
|
) |
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2 |
|
alphas = torch.cos(alphas).pow(2) |
|
alphas = alphas / alphas[0] |
|
betas = 1 - alphas[1:] / alphas[:-1] |
|
betas = np.clip(betas, a_min=0, a_max=0.999) |
|
|
|
elif schedule == "sqrt_linear": |
|
betas = torch.linspace( |
|
linear_start, linear_end, n_timestep, dtype=torch.float64 |
|
) |
|
elif schedule == "sqrt": |
|
betas = ( |
|
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) |
|
** 0.5 |
|
) |
|
else: |
|
raise ValueError(f"schedule '{schedule}' unknown.") |
|
return betas.numpy() |
|
|
|
|
|
def make_ddim_timesteps( |
|
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True |
|
): |
|
if ddim_discr_method == "uniform": |
|
c = num_ddpm_timesteps // num_ddim_timesteps |
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) |
|
elif ddim_discr_method == "quad": |
|
ddim_timesteps = ( |
|
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 |
|
).astype(int) |
|
else: |
|
raise NotImplementedError( |
|
f'There is no ddim discretization method called "{ddim_discr_method}"' |
|
) |
|
|
|
|
|
|
|
steps_out = ddim_timesteps + 1 |
|
if verbose: |
|
print(f"Selected timesteps for ddim sampler: {steps_out}") |
|
return steps_out |
|
|
|
|
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): |
|
|
|
|
|
alphas = alphacums[ddim_timesteps] |
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) |
|
|
|
|
|
sigmas = eta * np.sqrt( |
|
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) |
|
) |
|
if verbose: |
|
print( |
|
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" |
|
) |
|
print( |
|
f"For the chosen value of eta, which is {eta}, " |
|
f"this results in the following sigma_t schedule for ddim sampler {sigmas}" |
|
) |
|
return sigmas, alphas, alphas_prev |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|