|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
import kornia |
|
import open_clip |
|
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel |
|
from lvdm.common import autocast |
|
from utils.utils import count_params |
|
|
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
class IdentityEncoder(AbstractEncoder): |
|
|
|
def encode(self, x): |
|
return x |
|
|
|
|
|
class ClassEmbedder(nn.Module): |
|
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1): |
|
super().__init__() |
|
self.key = key |
|
self.embedding = nn.Embedding(n_classes, embed_dim) |
|
self.n_classes = n_classes |
|
self.ucg_rate = ucg_rate |
|
|
|
def forward(self, batch, key=None, disable_dropout=False): |
|
if key is None: |
|
key = self.key |
|
|
|
c = batch[key][:, None] |
|
if self.ucg_rate > 0.0 and not disable_dropout: |
|
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) |
|
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) |
|
c = c.long() |
|
c = self.embedding(c) |
|
return c |
|
|
|
def get_unconditional_conditioning(self, bs, device="cuda"): |
|
uc_class = ( |
|
self.n_classes - 1 |
|
) |
|
uc = torch.ones((bs,), device=device) * uc_class |
|
uc = {self.key: uc} |
|
return uc |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder): |
|
"""Uses the T5 transformer encoder for text""" |
|
|
|
def __init__( |
|
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True |
|
): |
|
super().__init__() |
|
self.tokenizer = T5Tokenizer.from_pretrained(version) |
|
self.transformer = T5EncoderModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
|
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
|
|
LAYERS = ["last", "pooled", "hidden"] |
|
|
|
def __init__( |
|
self, |
|
version="openai/clip-vit-large-patch14", |
|
device="cuda", |
|
max_length=77, |
|
freeze=True, |
|
layer="last", |
|
layer_idx=None, |
|
): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
self.layer_idx = layer_idx |
|
if layer == "hidden": |
|
assert layer_idx is not None |
|
assert 0 <= abs(layer_idx) <= 12 |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer( |
|
input_ids=tokens, output_hidden_states=self.layer == "hidden" |
|
) |
|
if self.layer == "last": |
|
z = outputs.last_hidden_state |
|
elif self.layer == "pooled": |
|
z = outputs.pooler_output[:, None, :] |
|
else: |
|
z = outputs.hidden_states[self.layer_idx] |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class ClipImageEmbedder(nn.Module): |
|
def __init__( |
|
self, |
|
model, |
|
jit=False, |
|
device="cuda" if torch.cuda.is_available() else "cpu", |
|
antialias=True, |
|
ucg_rate=0.0, |
|
): |
|
super().__init__() |
|
from clip import load as load_clip |
|
|
|
self.model, _ = load_clip(name=model, device=device, jit=jit) |
|
|
|
self.antialias = antialias |
|
|
|
self.register_buffer( |
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False |
|
) |
|
self.register_buffer( |
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False |
|
) |
|
self.ucg_rate = ucg_rate |
|
|
|
def preprocess(self, x): |
|
|
|
x = kornia.geometry.resize( |
|
x, |
|
(224, 224), |
|
interpolation="bicubic", |
|
align_corners=True, |
|
antialias=self.antialias, |
|
) |
|
x = (x + 1.0) / 2.0 |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def forward(self, x, no_dropout=False): |
|
|
|
out = self.model.encode_image(self.preprocess(x)) |
|
out = out.to(x.dtype) |
|
if self.ucg_rate > 0.0 and not no_dropout: |
|
out = ( |
|
torch.bernoulli( |
|
(1.0 - self.ucg_rate) * torch.ones(out.shape[0], device=out.device) |
|
)[:, None] |
|
* out |
|
) |
|
return out |
|
|
|
|
|
class FrozenOpenCLIPEmbedder(AbstractEncoder): |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
|
|
LAYERS = [ |
|
|
|
"last", |
|
"penultimate", |
|
] |
|
|
|
def __init__( |
|
self, |
|
arch="ViT-H-14", |
|
version="laion2b_s32b_b79k", |
|
device="cuda", |
|
max_length=77, |
|
freeze=True, |
|
layer="last", |
|
): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
model, _, _ = open_clip.create_model_and_transforms( |
|
arch, device=torch.device("cpu") |
|
) |
|
del model.visual |
|
self.model = model |
|
|
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
if self.layer == "last": |
|
self.layer_idx = 0 |
|
elif self.layer == "penultimate": |
|
self.layer_idx = 1 |
|
else: |
|
raise NotImplementedError() |
|
|
|
def freeze(self): |
|
self.model = self.model.eval() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
self.device = self.model.positional_embedding.device |
|
tokens = open_clip.tokenize(text) |
|
z = self.encode_with_transformer(tokens.to(self.device)) |
|
return z |
|
|
|
def encode_with_transformer(self, text): |
|
x = self.model.token_embedding(text) |
|
x = x + self.model.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) |
|
x = x.permute(1, 0, 2) |
|
x = self.model.ln_final(x) |
|
return x |
|
|
|
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): |
|
for i, r in enumerate(self.model.transformer.resblocks): |
|
if i == len(self.model.transformer.resblocks) - self.layer_idx: |
|
break |
|
if ( |
|
self.model.transformer.grad_checkpointing |
|
and not torch.jit.is_scripting() |
|
): |
|
x = checkpoint(r, x, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenOpenCLIPImageEmbedder(AbstractEncoder): |
|
""" |
|
Uses the OpenCLIP vision transformer encoder for images |
|
""" |
|
|
|
def __init__( |
|
self, |
|
arch="ViT-H-14", |
|
version="laion2b_s32b_b79k", |
|
device="cuda", |
|
max_length=77, |
|
freeze=True, |
|
layer="pooled", |
|
antialias=True, |
|
ucg_rate=0.0, |
|
): |
|
super().__init__() |
|
model, _, _ = open_clip.create_model_and_transforms( |
|
arch, |
|
device=torch.device("cpu"), |
|
pretrained=version, |
|
) |
|
del model.transformer |
|
self.model = model |
|
|
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
if self.layer == "penultimate": |
|
raise NotImplementedError() |
|
self.layer_idx = 1 |
|
|
|
self.antialias = antialias |
|
|
|
self.register_buffer( |
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False |
|
) |
|
self.register_buffer( |
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False |
|
) |
|
self.ucg_rate = ucg_rate |
|
|
|
def preprocess(self, x): |
|
|
|
x = kornia.geometry.resize( |
|
x, |
|
(224, 224), |
|
interpolation="bicubic", |
|
align_corners=True, |
|
antialias=self.antialias, |
|
) |
|
x = (x + 1.0) / 2.0 |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def freeze(self): |
|
self.model = self.model.eval() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
@autocast |
|
def forward(self, image, no_dropout=False): |
|
z = self.encode_with_vision_transformer(image) |
|
if self.ucg_rate > 0.0 and not no_dropout: |
|
z = ( |
|
torch.bernoulli( |
|
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device) |
|
)[:, None] |
|
* z |
|
) |
|
return z |
|
|
|
def encode_with_vision_transformer(self, img): |
|
img = self.preprocess(img) |
|
x = self.model.visual(img) |
|
return x |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder): |
|
""" |
|
Uses the OpenCLIP vision transformer encoder for images |
|
""" |
|
|
|
def __init__( |
|
self, |
|
arch="ViT-H-14", |
|
version="laion2b_s32b_b79k", |
|
device="cuda", |
|
freeze=True, |
|
layer="pooled", |
|
antialias=True, |
|
): |
|
super().__init__() |
|
model, _, _ = open_clip.create_model_and_transforms( |
|
arch, |
|
device=torch.device("cpu"), |
|
pretrained=version, |
|
) |
|
del model.transformer |
|
self.model = model |
|
self.device = device |
|
|
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
if self.layer == "penultimate": |
|
raise NotImplementedError() |
|
self.layer_idx = 1 |
|
|
|
self.antialias = antialias |
|
self.register_buffer( |
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False |
|
) |
|
self.register_buffer( |
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False |
|
) |
|
|
|
def preprocess(self, x): |
|
|
|
x = kornia.geometry.resize( |
|
x, |
|
(224, 224), |
|
interpolation="bicubic", |
|
align_corners=True, |
|
antialias=self.antialias, |
|
) |
|
x = (x + 1.0) / 2.0 |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def freeze(self): |
|
self.model = self.model.eval() |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, image, no_dropout=False): |
|
|
|
z = self.encode_with_vision_transformer(image) |
|
return z |
|
|
|
def encode_with_vision_transformer(self, x): |
|
x = self.preprocess(x) |
|
|
|
|
|
if self.model.visual.input_patchnorm: |
|
|
|
x = x.reshape( |
|
x.shape[0], |
|
x.shape[1], |
|
self.model.visual.grid_size[0], |
|
self.model.visual.patch_size[0], |
|
self.model.visual.grid_size[1], |
|
self.model.visual.patch_size[1], |
|
) |
|
x = x.permute(0, 2, 4, 1, 3, 5) |
|
x = x.reshape( |
|
x.shape[0], |
|
self.model.visual.grid_size[0] * self.model.visual.grid_size[1], |
|
-1, |
|
) |
|
x = self.model.visual.patchnorm_pre_ln(x) |
|
x = self.model.visual.conv1(x) |
|
else: |
|
x = self.model.visual.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
|
|
|
|
x = torch.cat( |
|
[ |
|
self.model.visual.class_embedding.to(x.dtype) |
|
+ torch.zeros( |
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device |
|
), |
|
x, |
|
], |
|
dim=1, |
|
) |
|
x = x + self.model.visual.positional_embedding.to(x.dtype) |
|
|
|
|
|
x = self.model.visual.patch_dropout(x) |
|
x = self.model.visual.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.model.visual.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
return x |
|
|
|
|
|
class FrozenCLIPT5Encoder(AbstractEncoder): |
|
def __init__( |
|
self, |
|
clip_version="openai/clip-vit-large-patch14", |
|
t5_version="google/t5-v1_1-xl", |
|
device="cuda", |
|
clip_max_length=77, |
|
t5_max_length=77, |
|
): |
|
super().__init__() |
|
self.clip_encoder = FrozenCLIPEmbedder( |
|
clip_version, device, max_length=clip_max_length |
|
) |
|
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) |
|
print( |
|
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " |
|
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params." |
|
) |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
def forward(self, text): |
|
clip_z = self.clip_encoder.encode(text) |
|
t5_z = self.t5_encoder.encode(text) |
|
return [clip_z, t5_z] |
|
|