kingabzpro commited on
Commit
b90c2f9
Β·
1 Parent(s): 631705d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -13,10 +13,10 @@ The bot is trained on blended_skill_talk dataset using facebook/blenderbot-400M-
13
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.06616' target='_blank'>Recipes for building an open-domain chatbot</a></p><p style='text-align: center'><a href='https://parl.ai/projects/recipes/' target='_blank'>Original PARLAI Code</a></p></center></p>"
14
 
15
  import torch
16
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, BlenderbotForCausalLM, BlenderbotTokenizer
17
 
18
  tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
19
- model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill",add_cross_attention=False)
20
 
21
  def predict(input, history=[]):
22
  # tokenize the new input sentence
@@ -26,7 +26,7 @@ def predict(input, history=[]):
26
  bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
27
 
28
  # generate a response
29
- history = model.generate(new_user_input_ids , max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
30
 
31
  # convert the tokens to text, and then split the responses into the right format
32
  response = tokenizer.decode(history[0]).replace("<s>","").split("</s>")
 
13
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.06616' target='_blank'>Recipes for building an open-domain chatbot</a></p><p style='text-align: center'><a href='https://parl.ai/projects/recipes/' target='_blank'>Original PARLAI Code</a></p></center></p>"
14
 
15
  import torch
16
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, BlenderbotForConditionalGeneration, BlenderbotForCausalLM, BlenderbotTokenizer
17
 
18
  tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
19
+ model = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill",add_cross_attention=False)
20
 
21
  def predict(input, history=[]):
22
  # tokenize the new input sentence
 
26
  bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
27
 
28
  # generate a response
29
+ history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
30
 
31
  # convert the tokens to text, and then split the responses into the right format
32
  response = tokenizer.decode(history[0]).replace("<s>","").split("</s>")