Spaces:
Running
Running
File size: 34,754 Bytes
e9917a9 53f71cb e9917a9 53f71cb 50ca5e2 3fc783e 8036f1b e9917a9 6a252ee e9917a9 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee 53f71cb 6a252ee e9917a9 53f71cb 6a252ee e9917a9 6a252ee e9917a9 6a252ee e9917a9 53f71cb 50ca5e2 53f71cb 6a252ee 53f71cb 3fc783e 53f71cb e9917a9 53f71cb e9917a9 53f71cb e9917a9 53f71cb e9917a9 53f71cb e9917a9 53f71cb e9917a9 50ca5e2 e9917a9 50ca5e2 e9917a9 50ca5e2 e9917a9 50ca5e2 e9917a9 50ca5e2 3fc783e 50ca5e2 6956947 50ca5e2 e9917a9 50ca5e2 caf8a07 50ca5e2 caf8a07 50ca5e2 e9917a9 caf8a07 e9917a9 3fc783e e9917a9 3fc783e 4968442 e9917a9 4968442 3fc783e 4968442 e9917a9 3fc783e e9917a9 caf8a07 e9917a9 6a975c0 6a252ee e9917a9 caf8a07 e9917a9 6a975c0 e9917a9 bcbd92e 3fc783e 50ca5e2 1f5af3a e9917a9 50ca5e2 e9917a9 50ca5e2 e9917a9 50ca5e2 caf8a07 50ca5e2 e9917a9 50ca5e2 e9917a9 50ca5e2 3fc783e 50ca5e2 caf8a07 50ca5e2 e9917a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
import os
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
from transformers import CLIPTextModel, CLIPTextConfig
from safetensors.torch import load_file
from collections import OrderedDict
import re
import json
import gdown
import requests
import subprocess
from urllib.parse import urlparse, unquote
from pathlib import Path
import tempfile
from tqdm import tqdm
import psutil
import math
import shutil
import hashlib
from datetime import datetime
from typing import Dict, List, Optional
from huggingface_hub import login, HfApi
from types import SimpleNamespace
# Remove unused imports
# import os
# import gradio as gr
# import torch
# from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
# from transformers import CLIPTextModel, CLIPTextConfig
# from safetensors.torch import load_file
# from collections import OrderedDict
# import re
# import json
# import gdown
# import requests
# import subprocess
# from urllib.parse import urlparse, unquote
# from pathlib import Path
# import tempfile
# from tqdm import tqdm
# import psutil
# import math
# import shutil
# import hashlib
# from datetime import datetime
# from typing import Dict, List, Optional
# from huggingface_hub import login, HfApi
# from types import SimpleNamespace
# ---------------------- UTILITY FUNCTIONS ----------------------
def is_valid_url(url):
"""Checks if a string is a valid URL."""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except Exception as e:
print(f"Error checking URL validity: {e}")
return False
def get_filename(url):
"""Extracts the filename from a URL."""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
if 'content-disposition' in response.headers:
content_disposition = response.headers['content-disposition']
filename = re.findall('filename="?([^";]+)"?', content_disposition)[0]
else:
url_path = urlparse(url).path
filename = unquote(os.path.basename(url_path))
return filename
except Exception as e:
print(f"Error getting filename from URL: {e}")
return None
def get_supported_extensions():
"""Returns a tuple of supported model file extensions."""
return tuple([".ckpt", ".safetensors", ".pt", ".pth"])
def download_model(url, dst, output_widget):
"""Downloads a model from a URL to the specified destination."""
filename = get_filename(url)
filepath = os.path.join(dst, filename)
try:
if "drive.google.com" in url:
gdown = gdown_download(url, dst, filepath)
else:
if "huggingface.co" in url:
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
subprocess.run(["aria2c","-x 16",url,"-d",dst,"-o",filename])
return filepath
except Exception as e:
print(f"Error downloading model: {e}")
return None
def determine_load_checkpoint(model_to_load):
"""Determines if the model to load is a checkpoint, Diffusers model, or URL."""
try:
if is_valid_url(model_to_load) and (model_to_load.endswith(get_supported_extensions())):
return True
elif model_to_load.endswith(get_supported_extensions()):
return True
elif os.path.isdir(model_to_load):
required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
if required_folders.issubset(set(os.listdir(model_to_load))) and os.path.isfile(os.path.join(model_to_load, "model_index.json")):
return False
except Exception as e:
print(f"Error determining load checkpoint: {e}")
return None # handle this case as required
def create_model_repo(api, user, orgs_name, model_name, make_private=False):
"""Creates a Hugging Face model repository if it doesn't exist."""
try:
if orgs_name == "":
repo_id = user["name"] + "/" + model_name.strip()
else:
repo_id = orgs_name + "/" + model_name.strip()
validate_repo_id(repo_id)
api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
print(f"Model repo '{repo_id}' didn't exist, creating repo")
except HfHubHTTPError as e:
print(f"Model repo '{repo_id}' exists, skipping create repo")
print(f"Model repo '{repo_id}' link: https://huggingface.co/{repo_id}\n")
return repo_id
def is_diffusers_model(model_path):
"""Checks if a given path is a valid Diffusers model directory."""
try:
required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
return required_folders.issubset(set(os.listdir(model_path))) and os.path.isfile(os.path.join(model_path, "model_index.json"))
except Exception as e:
print(f"Error checking if model is a Diffusers model: {e}")
return False
# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
"""Loads SDXL model components from a checkpoint file."""
try:
text_encoder1 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder").to(device)
text_encoder2 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder_2").to(device)
vae = AutoencoderKL.from_pretrained(sdxl_base_id, subfolder="vae").to(device)
unet = UNet2DConditionModel.from_pretrained(sdxl_base_id, subfolder="unet").to(device)
unet = unet
ckpt_state_dict = torch.load(checkpoint_path, map_location=device)
o = OrderedDict()
for key in list(ckpt_state_dict.keys()):
o[key.replace("module.", "")] = ckpt_state_dict[key]
del ckpt_state_dict
print("Applying weights to text encoder 1:")
text_encoder1.load_state_dict({
'.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.cond_stage_model.model.transformer")
}, strict=False)
print("Applying weights to text encoder 2:")
text_encoder2.load_state_dict({
'.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("cond_stage_model.model.transformer")
}, strict=False)
print("Applying weights to VAE:")
vae.load_state_dict({
'.'.join(key.split('.')[2:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.model")
}, strict=False)
print("Applying weights to UNet:")
unet.load_state_dict({
key: o[key] for key in list(o.keys()) if key.startswith("model.diffusion_model")
}, strict=False)
logit_scale = None #Not used here!
global_step = None #Not used here!
return text_encoder1, text_encoder2, vae, unet, logit_scale, global_step
except Exception as e:
print(f"Error loading models from checkpoint: {e}")
return None
def save_stable_diffusion_checkpoint(save_path, text_encoder1, text_encoder2, unet, epoch, global_step, ckpt_info, vae, logit_scale, save_dtype):
"""Saves the stable diffusion checkpoint."""
weights = OrderedDict()
text_encoder1_dict = text_encoder1.state_dict()
text_encoder2_dict = text_encoder2.state_dict()
unet_dict = unet.state_dict()
vae_dict = vae.state_dict()
def replace_key(key):
key = "cond_stage_model.model.transformer." + key
return key
print("Merging text encoder 1")
for key in tqdm(list(text_encoder1_dict.keys())):
weights["first_stage_model.cond_stage_model.model.transformer." + key] = text_encoder1_dict[key].to(save_dtype)
print("Merging text encoder 2")
for key in tqdm(list(text_encoder2_dict.keys())):
weights[replace_key(key)] = text_encoder2_dict[key].to(save_dtype)
print("Merging vae")
for key in tqdm(list(vae_dict.keys())):
weights["first_stage_model.model." + key] = vae_dict[key].to(save_dtype)
print("Merging unet")
for key in tqdm(list(unet_dict.keys())):
weights["model.diffusion_model." + key] = unet_dict[key].to(save_dtype)
info = {"epoch": epoch, "global_step": global_step}
if ckpt_info is not None:
info.update(ckpt_info)
if logit_scale is not None:
info["logit_scale"] = logit_scale.item()
torch.save({"state_dict": weights, "info": info}, save_path)
key_count = len(weights.keys())
del weights
del text_encoder1_dict, text_encoder2_dict, unet_dict, vae_dict
return key_count
def save_diffusers_checkpoint(save_path, text_encoder1, text_encoder2, unet, reference_model, vae, trim_if_model_exists, save_dtype):
"""Saves the SDXL model as a Diffusers model."""
print("Saving SDXL as Diffusers format to:", save_path)
print("SDXL Text Encoder 1 to:", os.path.join(save_path, "text_encoder"))
text_encoder1.save_pretrained(os.path.join(save_path, "text_encoder"))
print("SDXL Text Encoder 2 to:", os.path.join(save_path, "text_encoder_2"))
text_encoder2.save_pretrained(os.path.join(save_path, "text_encoder_2"))
print("SDXL VAE to:", os.path.join(save_path, "vae"))
vae.save_pretrained(os.path.join(save_path, "vae"))
print("SDXL UNet to:", os.path.join(save_path, "unet"))
unet.save_pretrained(os.path.join(save_path, "unet"))
if reference_model is not None:
print(f"Copying scheduler from {reference_model}")
scheduler_src = StableDiffusionXLPipeline.from_pretrained(reference_model, torch_dtype=torch.float16).scheduler
torch.save(scheduler_src.config, os.path.join(save_path, "scheduler", "scheduler_config.json"))
else:
print(f"No reference Model. Copying scheduler from original model.")
scheduler_src = StableDiffusionXLPipeline.from_pretrained(reference_model, torch_dtype=torch.float16).scheduler
scheduler_src.save_pretrained(save_path)
if trim_if_model_exists:
print("Trim Complete")
# ---------------------- CONVERSION AND UPLOAD FUNCTIONS ----------------------
def load_sdxl_model(args, is_load_checkpoint, load_dtype, output_widget):
"""Loads the SDXL model from a checkpoint or Diffusers model."""
model_load_message = "checkpoint" if is_load_checkpoint else "Diffusers" + (" as fp16" if args.fp16 else "")
with output_widget:
print(f"Loading {model_load_message}: {args.model_to_load}")
if is_load_checkpoint:
loaded_model_data = load_from_sdxl_checkpoint(args, output_widget)
else:
loaded_model_data = load_sdxl_from_diffusers(args, load_dtype)
return loaded_model_data
def load_from_sdxl_checkpoint(args, output_widget):
"""Loads the SDXL model components from a checkpoint file (placeholder)."""
text_encoder1, text_encoder2, vae, unet = None, None, None, None
device = "cpu"
if is_valid_url(args.model_to_load):
tmp_model_name = "download"
download_dst_dir = tempfile.mkdtemp()
model_path = download_model(args.model_to_load, download_dst_dir, output_widget)
#model_path = os.path.join(download_dst_dir,tmp_model_name)
if model_path == None:
with output_widget:
print("Loading from Checkpoint failed, the request could not be completed")
return text_encoder1, text_encoder2, vae, unet
else:
# Implement Load model from ckpt or safetensors
try:
text_encoder1, text_encoder2, vae, unet, _, _ = load_models_from_sdxl_checkpoint(
"sdxl_base_v1-0", model_path, device
)
return text_encoder1, text_encoder2, vae, unet
except Exception as e:
print(f"Could not load SDXL from checkpoint due to: \n{e}")
return text_encoder1, text_encoder2, vae, unet
with output_widget:
print(f"Loading from Checkpoint from URL needs to be implemented - using {model_path}")
else:
# Implement Load model from ckpt or safetensors
try:
text_encoder1, text_encoder2, vae, unet, _, _ = load_models_from_sdxl_checkpoint(
"sdxl_base_v1-0", args.model_to_load, device
)
return text_encoder1, text_encoder2, vae, unet
except Exception as e:
print(f"Could not load SDXL from checkpoint due to: \n{e}")
return text_encoder1, text_encoder2, vae, unet
with output_widget:
print("Loading from Checkpoint needs to be implemented.")
return text_encoder1, text_encoder2, vae, unet
def load_sdxl_from_diffusers(args, load_dtype):
"""Loads an SDXL model from a Diffusers model directory."""
pipeline = StableDiffusionXLPipeline.from_pretrained(
args.model_to_load, torch_dtype=load_dtype, tokenizer=None, tokenizer_2=None, scheduler=None
)
text_encoder1 = pipeline.text_encoder
text_encoder2 = pipeline.text_encoder_2
vae = pipeline.vae
unet = pipeline.unet
return text_encoder1, text_encoder2, vae, unet
def convert_and_save_sdxl_model(args, is_save_checkpoint, loaded_model_data, save_dtype, output_widget):
"""Converts and saves the SDXL model as either a checkpoint or a Diffusers model."""
text_encoder1, text_encoder2, vae, unet = loaded_model_data
model_save_message = "checkpoint" + ("" if save_dtype is None else f" in {save_dtype}") if is_save_checkpoint else "Diffusers"
with output_widget:
print(f"Converting and saving as {model_save_message}: {args.model_to_save}")
if is_save_checkpoint:
save_sdxl_as_checkpoint(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget)
else:
save_sdxl_as_diffusers(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget)
def save_sdxl_as_checkpoint(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget):
"""Saves the SDXL model components as a checkpoint file (placeholder)."""
logit_scale = None
ckpt_info = None
key_count = save_stable_diffusion_checkpoint(
args.model_to_save, text_encoder1, text_encoder2, unet, args.epoch, args.global_step, ckpt_info, vae, logit_scale, save_dtype
)
with output_widget:
print(f"Model saved. Total converted state_dict keys: {key_count}")
def save_sdxl_as_diffusers(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget):
"""Saves the SDXL model as a Diffusers model."""
with output_widget:
reference_model_message = args.reference_model if args.reference_model is not None else 'default model'
print(f"Copying scheduler/tokenizer config from: {reference_model_message}")
# Save diffusers pipeline
pipeline = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder1,
text_encoder_2=text_encoder2,
unet=unet,
scheduler=None, # Replace None if there is a scheduler
tokenizer=None, # Replace None if there is a tokenizer
tokenizer_2=None # Replace None if there is a tokenizer_2
)
pipeline.save_pretrained(args.model_to_save)
with output_widget:
print(f"Model saved as {save_dtype}.")
def get_save_dtype(precision):
"""
Convert precision string to torch dtype
"""
if precision == "float32" or precision == "fp32":
return torch.float32
elif precision == "float16" or precision == "fp16":
return torch.float16
elif precision == "bfloat16" or precision == "bf16":
return torch.bfloat16
else:
raise ValueError(f"Unsupported precision: {precision}")
def get_file_size(file_path):
"""Get file size in GB."""
try:
size_bytes = Path(file_path).stat().st_size
return size_bytes / (1024 * 1024 * 1024) # Convert to GB
except:
return None
def get_available_memory():
"""Get available system memory in GB."""
return psutil.virtual_memory().available / (1024 * 1024 * 1024)
def estimate_memory_requirements(model_path, precision):
"""Estimate memory requirements for model conversion."""
try:
# Base memory requirement for SDXL
base_memory = 8 # GB
# Get model size if local file
model_size = get_file_size(model_path) if not is_valid_url(model_path) else None
# Adjust for precision
memory_multiplier = 1.0 if precision in ["float16", "fp16", "bfloat16", "bf16"] else 2.0
# Calculate total required memory
required_memory = (base_memory + (model_size if model_size else 12)) * memory_multiplier
return required_memory
except:
return 16 # Default safe estimate
def validate_model(model_path, precision):
"""
Validate the model before conversion.
Returns (is_valid, message)
"""
try:
# Check if it's a URL
if is_valid_url(model_path):
try:
response = requests.head(model_path)
if response.status_code != 200:
return False, "β Invalid URL or model not accessible"
if 'content-length' in response.headers:
size_gb = int(response.headers['content-length']) / (1024 * 1024 * 1024)
if size_gb < 0.1 and not model_path.endswith(('.ckpt', '.safetensors')):
return False, "β File too small to be a valid model"
except:
return False, "β Error checking URL"
# Check if it's a local file
elif not model_path.startswith("stabilityai/") and not Path(model_path).exists():
return False, "β Model file not found"
# Check available memory
available_memory = get_available_memory()
required_memory = estimate_memory_requirements(model_path, precision)
if available_memory < required_memory:
return True, f"β οΈ Insufficient memory detected. Need {math.ceil(required_memory)}GB, but only {math.ceil(available_memory)}GB available"
# Memory warning
memory_message = ""
if available_memory < required_memory * 1.5:
memory_message = "β οΈ Memory is tight. Consider closing other applications."
return True, f"β
Model validated successfully. {memory_message}"
except Exception as e:
return False, f"β Validation error: {str(e)}"
def cleanup_temp_files(directory=None):
"""Clean up temporary files after conversion."""
try:
if directory:
shutil.rmtree(directory, ignore_errors=True)
# Clean up other temp files
temp_pattern = "*.tmp"
for temp_file in Path(".").glob(temp_pattern):
temp_file.unlink()
except Exception as e:
print(f"Warning: Error during cleanup: {e}")
def convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, use_xformers, hf_token, orgs_name, model_name, make_private):
"""Convert the model between different formats."""
temp_dir = None
history = ConversionHistory()
try:
print("Starting model conversion...")
update_progress(output_widget, "β³ Initializing conversion process...", 0)
# Get optimization suggestions
available_memory = get_available_memory()
auto_suggestions = get_auto_optimization_suggestions(model_to_load, save_precision_as, available_memory)
history_suggestions = history.get_optimization_suggestions(model_to_load)
# Display suggestions
if auto_suggestions or history_suggestions:
print("\nπ Optimization Suggestions:")
for suggestion in auto_suggestions + history_suggestions:
print(suggestion)
print("\n")
# Validate model
is_valid, message = validate_model(model_to_load, save_precision_as)
if not is_valid:
raise ValueError(message)
print(message)
args = SimpleNamespace()
args.model_to_load = model_to_load
args.save_precision_as = save_precision_as
args.epoch = epoch
args.global_step = global_step
args.reference_model = reference_model
args.fp16 = fp16
args.use_xformers = use_xformers
update_progress(output_widget, "π Validating input model...", 10)
args.model_to_save = increment_filename(os.path.splitext(args.model_to_load)[0] + ".safetensors")
save_dtype = get_save_dtype(save_precision_as)
# Create temporary directory for processing
temp_dir = tempfile.mkdtemp(prefix="sdxl_conversion_")
update_progress(output_widget, "π₯ Loading model components...", 30)
is_load_checkpoint = determine_load_checkpoint(args.model_to_load)
if is_load_checkpoint is None:
raise ValueError("Invalid model format or path")
update_progress(output_widget, "π Converting model...", 50)
loaded_model_data = load_sdxl_model(args, is_load_checkpoint, save_dtype, output_widget)
update_progress(output_widget, "πΎ Saving converted model...", 80)
is_save_checkpoint = args.model_to_save.endswith(get_supported_extensions())
result = convert_and_save_sdxl_model(args, is_save_checkpoint, loaded_model_data, save_dtype, output_widget)
update_progress(output_widget, "β
Conversion completed!", 100)
print(f"Model conversion completed. Saved to: {args.model_to_save}")
# Verify the converted model
is_valid, verify_message = verify_model_structure(args.model_to_save)
if not is_valid:
raise ValueError(verify_message)
print(verify_message)
# Record successful conversion
history.add_entry(
model_to_load,
{
'precision': save_precision_as,
'fp16': fp16,
'epoch': epoch,
'global_step': global_step
},
True,
"Conversion completed successfully"
)
cleanup_temp_files(temp_dir)
return result
except Exception as e:
if temp_dir:
cleanup_temp_files(temp_dir)
# Record failed conversion
history.add_entry(
model_to_load,
{
'precision': save_precision_as,
'fp16': fp16,
'epoch': epoch,
'global_step': global_step
},
False,
str(e)
)
error_msg = f"β Error during model conversion: {str(e)}"
print(error_msg)
return error_msg
def update_progress(output_widget, message, progress):
"""Update the progress bar and message in the UI."""
progress_bar = "β" * (progress // 5) + "β" * ((100 - progress) // 5)
print(f"{message}\n[{progress_bar}] {progress}%")
class ConversionHistory:
def __init__(self, history_file="conversion_history.json"):
self.history_file = history_file
self.history = self._load_history()
def _load_history(self) -> List[Dict]:
try:
with open(self.history_file, 'r') as f:
return json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
return []
def _save_history(self):
with open(self.history_file, 'w') as f:
json.dump(self.history, f, indent=2)
def add_entry(self, model_path: str, settings: Dict, success: bool, message: str):
entry = {
'timestamp': datetime.now().isoformat(),
'model_path': model_path,
'settings': settings,
'success': success,
'message': message
}
self.history.append(entry)
self._save_history()
def get_optimization_suggestions(self, model_path: str) -> List[str]:
"""Analyze history and provide optimization suggestions."""
suggestions = []
similar_conversions = [h for h in self.history if h['model_path'] == model_path]
if similar_conversions:
success_rate = sum(1 for h in similar_conversions if h['success']) / len(similar_conversions)
if success_rate < 1.0:
failed_attempts = [h for h in similar_conversions if not h['success']]
if any('memory' in h['message'].lower() for h in failed_attempts):
suggestions.append("β οΈ Previous attempts had memory issues. Consider using fp16 precision.")
if any('timeout' in h['message'].lower() for h in failed_attempts):
suggestions.append("β οΈ Previous attempts timed out. Try breaking down the conversion process.")
return suggestions
def verify_model_structure(model_path: str) -> tuple[bool, str]:
"""Verify the structure of the converted model."""
try:
if model_path.endswith('.safetensors'):
# Verify safetensors structure
with safe_open(model_path, framework="pt") as f:
if not f.keys():
return False, "β Invalid safetensors file: no tensors found"
# Check for essential components
required_keys = ["model.diffusion_model", "first_stage_model"]
missing_keys = []
# Load and check key components
state_dict = load_file(model_path)
for key in required_keys:
if not any(k.startswith(key) for k in state_dict.keys()):
missing_keys.append(key)
if missing_keys:
return False, f"β Missing essential components: {', '.join(missing_keys)}"
return True, "β
Model structure verified successfully"
except Exception as e:
return False, f"β Model verification failed: {str(e)}"
def get_auto_optimization_suggestions(model_path: str, precision: str, available_memory: float) -> List[str]:
"""Generate automatic optimization suggestions based on model and system characteristics."""
suggestions = []
# Memory-based suggestions
if available_memory < 16:
suggestions.append("π‘ Limited memory detected. Consider these options:")
suggestions.append(" - Use fp16 precision to reduce memory usage")
suggestions.append(" - Close other applications before conversion")
suggestions.append(" - Use a machine with more RAM if available")
# Precision-based suggestions
if precision == "float32" and available_memory < 32:
suggestions.append("π‘ Consider using fp16 precision for better memory efficiency")
# Model size-based suggestions
model_size = get_file_size(model_path) if not is_valid_url(model_path) else None
if model_size and model_size > 10:
suggestions.append("π‘ Large model detected. Recommendations:")
suggestions.append(" - Ensure stable internet connection for URL downloads")
suggestions.append(" - Consider breaking down the conversion process")
return suggestions
def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private):
"""Uploads a model to the Hugging Face Hub."""
try:
# Login to Hugging Face
login(hf_token, add_to_git_credential=True)
# Prepare model upload
if not os.path.exists(model_path):
raise ValueError("Model path does not exist.")
# Check if repo already exists
api = HfApi()
repo_id = f"{orgs_name}/{model_name}" if orgs_name else model_name
try:
api.repo_info(repo_id)
print(f"β οΈ Repository '{repo_id}' already exists. Proceeding with upload.")
except Exception:
if make_private:
api.create_repo(repo_id, private=True)
else:
api.create_repo(repo_id)
# Push model files
api.upload_folder(
folder_path=model_path,
path_in_repo="",
repo_id=repo_id,
commit_message=f"Upload model: {model_name}",
ignore_patterns=".ipynb_checkpoints",
)
print(f"Model uploaded to: https://huggingface.co/{repo_id}")
return f"Model uploaded to: https://huggingface.co/{repo_id}"
except Exception as e:
error_msg = f"β Error during upload: {str(e)}"
print(error_msg)
return error_msg
# ---------------------- GRADIO INTERFACE ----------------------
def main(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, use_xformers, hf_token, orgs_name, model_name, make_private):
"""Main function orchestrating the entire process."""
output = gr.Markdown()
# Create tempdir, will only be there for the function
with tempfile.TemporaryDirectory() as output_path:
conversion_output = convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, use_xformers, hf_token, orgs_name, model_name, make_private)
upload_output = upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private)
# Return a combined output
return f"{conversion_output}\n\n{upload_output}"
def increment_filename(filename):
"""
If a file exists, add a number to the filename to make it unique.
Example: if test.txt exists, return test(1).txt
"""
if not os.path.exists(filename):
return filename
directory = os.path.dirname(filename)
name, ext = os.path.splitext(os.path.basename(filename))
counter = 1
while True:
new_name = os.path.join(directory, f"{name}({counter}){ext}")
if not os.path.exists(new_name):
return new_name
counter += 1
with gr.Blocks(css="#main-container { display: flex; flex-direction: column; height: 100vh; justify-content: space-between; font-family: 'Arial', sans-serif; font-size: 16px; color: #333; } #convert-button { margin-top: auto; }") as demo:
gr.Markdown("""
# π¨ SDXL Model Converter
Convert SDXL models between different formats and precisions. Works on CPU!
### π₯ Input Sources Supported:
- Local model files (.safetensors, .ckpt, etc.)
- Direct URLs to model files
- Hugging Face model repositories (e.g., 'stabilityai/stable-diffusion-xl-base-1.0')
### βΉοΈ Important Notes:
- This tool runs on CPU, though conversion might be slower than on GPU
- For Hugging Face uploads, you need a **WRITE** token (not a read token)
- Get your HF token here: https://huggingface.co/settings/tokens
### πΎ Memory Usage Tips:
- Use FP16 precision when possible to reduce memory usage
- Close other applications during conversion
- For large models, ensure you have at least 16GB of RAM
""")
with gr.Row():
with gr.Column():
model_to_load = gr.Textbox(
label="Model Path/URL/HF Repo",
placeholder="Enter local path, URL, or Hugging Face model ID (e.g., stabilityai/stable-diffusion-xl-base-1.0)",
type="text"
)
save_precision_as = gr.Dropdown(
choices=["float32", "float16", "bfloat16"],
value="float16",
label="Save Precision",
info="Choose model precision (float16 recommended for most cases)"
)
with gr.Row():
epoch = gr.Number(
value=0,
label="Epoch",
precision=0,
info="Optional: Set epoch number for the saved model"
)
global_step = gr.Number(
value=0,
label="Global Step",
precision=0,
info="Optional: Set training step for the saved model"
)
reference_model = gr.Textbox(
label="Reference Model (Optional)",
placeholder="Path to reference model for scheduler config",
info="Optional: Used to copy scheduler configuration"
)
fp16 = gr.Checkbox(
label="Load in FP16",
value=True,
info="Load model in half precision (recommended for CPU usage)"
)
use_xformers = gr.Checkbox(
label="Enable Memory-Efficient Attention",
value=False,
info="Enable xFormers for reduced memory usage during conversion"
)
# Hugging Face Upload Section
gr.Markdown("### Upload to Hugging Face (Optional)")
hf_token = gr.Textbox(
label="Hugging Face Token",
placeholder="Enter your WRITE token from huggingface.co/settings/tokens",
type="password",
info=" Must be a WRITE token, not a read token!"
)
with gr.Row():
orgs_name = gr.Textbox(
label="Organization Name",
placeholder="Optional: Your organization name",
info="Leave empty to use your personal account"
)
model_name = gr.Textbox(
label="Model Name",
placeholder="Name for your uploaded model",
info="The name your model will have on Hugging Face"
)
make_private = gr.Checkbox(
label="Make Private",
value=True,
info="Keep the uploaded model private on Hugging Face"
)
with gr.Column():
output = gr.Markdown(label="Output")
convert_btn = gr.Button("Convert Model", variant="primary", elem_id="convert-button")
convert_btn.click(
fn=main,
inputs=[
model_to_load,
save_precision_as,
epoch,
global_step,
reference_model,
fp16,
use_xformers,
hf_token,
orgs_name,
model_name,
make_private
],
outputs=output
)
demo.launch() |