Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ import scipy
|
|
16 |
from googletrans import Translator
|
17 |
import re
|
18 |
import subprocess
|
|
|
19 |
|
20 |
ZipFile("ffmpeg.zip").extractall()
|
21 |
st = os.stat('ffmpeg')
|
@@ -25,9 +26,6 @@ with open('google_lang_codes.json', 'r') as f:
|
|
25 |
google_lang_codes = json.load(f)
|
26 |
|
27 |
translator = Translator()
|
28 |
-
|
29 |
-
#tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-3.3B")
|
30 |
-
#model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-3.3B")
|
31 |
whisper_model = WhisperModel("large-v2", device="cuda", compute_type="float16")
|
32 |
|
33 |
print("cwd", os.getcwd())
|
@@ -42,37 +40,39 @@ def process_video(Video, target_language):
|
|
42 |
run(["ffmpeg", "-version"])
|
43 |
audio_file = f"{common_uuid}.wav"
|
44 |
run(["ffmpeg", "-i", Video, audio_file])
|
45 |
-
|
46 |
# Transcription with Whisper.
|
47 |
-
print("
|
48 |
-
segments, _ = whisper_model.transcribe(audio_file,
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Create a list to hold the translated lines.
|
53 |
translated_lines = []
|
54 |
|
55 |
with open(transcript_file, "w+", encoding="utf-8") as f:
|
56 |
counter = 1
|
57 |
-
for
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
formatted_start = f"{start_hours:02d}:{start_minutes:02d}:{start_seconds:02d},{start_milliseconds:03d}"
|
69 |
-
formatted_end = f"{end_hours:02d}:{end_minutes:02d}:{end_seconds:02d},{end_milliseconds:03d}"
|
70 |
-
|
71 |
f.write(f"{counter}\n")
|
72 |
f.write(f"{formatted_start} --> {formatted_end}\n")
|
73 |
-
f.write(f"{
|
74 |
counter += 1
|
75 |
|
|
|
76 |
|
77 |
# Move the file pointer to the beginning of the file.
|
78 |
f.seek(0)
|
|
|
16 |
from googletrans import Translator
|
17 |
import re
|
18 |
import subprocess
|
19 |
+
import datetime
|
20 |
|
21 |
ZipFile("ffmpeg.zip").extractall()
|
22 |
st = os.stat('ffmpeg')
|
|
|
26 |
google_lang_codes = json.load(f)
|
27 |
|
28 |
translator = Translator()
|
|
|
|
|
|
|
29 |
whisper_model = WhisperModel("large-v2", device="cuda", compute_type="float16")
|
30 |
|
31 |
print("cwd", os.getcwd())
|
|
|
40 |
run(["ffmpeg", "-version"])
|
41 |
audio_file = f"{common_uuid}.wav"
|
42 |
run(["ffmpeg", "-i", Video, audio_file])
|
43 |
+
transcript_file = f"{common_uuid}.srt"
|
44 |
# Transcription with Whisper.
|
45 |
+
print("Starting transcription with Whisper with word-level timestamps and VAD filter")
|
46 |
+
segments, _ = whisper_model.transcribe(audio_file, word_timestamps=True, vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500))
|
47 |
+
# Process each segment and word for detailed timestamping
|
48 |
+
transcript_with_timestamps = []
|
49 |
+
for segment in segments:
|
50 |
+
for word in segment.words:
|
51 |
+
start_time = f"{word.start:.2f}"
|
52 |
+
end_time = f"{word.end:.2f}"
|
53 |
+
transcript_with_timestamps.append(f"[{start_time}s -> {end_time}s] {word.word}")
|
54 |
|
55 |
# Create a list to hold the translated lines.
|
56 |
translated_lines = []
|
57 |
|
58 |
with open(transcript_file, "w+", encoding="utf-8") as f:
|
59 |
counter = 1
|
60 |
+
for line in transcript_with_timestamps:
|
61 |
+
# Extract timestamp and word from the line
|
62 |
+
timestamp, word = re.match(r"\[(.*?)s -> (.*?)s\] (.*)", line).groups()
|
63 |
+
start_time, end_time = timestamp.split(' -> ')
|
64 |
+
|
65 |
+
# Convert timestamps to SRT format
|
66 |
+
formatted_start = str(datetime.timedelta(seconds=float(start_time)))
|
67 |
+
formatted_end = str(datetime.timedelta(seconds=float(end_time)))
|
68 |
+
|
69 |
+
# Write to SRT file
|
|
|
|
|
|
|
|
|
70 |
f.write(f"{counter}\n")
|
71 |
f.write(f"{formatted_start} --> {formatted_end}\n")
|
72 |
+
f.write(f"{word}\n\n")
|
73 |
counter += 1
|
74 |
|
75 |
+
|
76 |
|
77 |
# Move the file pointer to the beginning of the file.
|
78 |
f.seek(0)
|