Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -362,8 +362,8 @@ model_ids = [
|
|
362 |
"sentence-transformers/distiluse-base-multilingual-cased-v2",
|
363 |
"Alibaba-NLP/gte-multilingual-base",
|
364 |
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
|
365 |
"BAAI/bge-reranker-v2-m3",
|
366 |
-
"jinaai/jina-reranker-v2-base-multilingual"
|
367 |
]
|
368 |
# model_id = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
369 |
# model_id = "Alibaba-NLP/gte-multilingual-base"
|
@@ -373,20 +373,28 @@ model_ids = [
|
|
373 |
# model_id = "sentence-transformers/distiluse-base-multilingual-cased-v2"
|
374 |
|
375 |
model_id = model_ids[-1]
|
|
|
|
|
376 |
|
377 |
-
|
378 |
-
model
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
-
# codes_emb = model.encode([x[6:] for x in codes])
|
388 |
-
codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
|
389 |
-
# codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
|
390 |
# for x in examples:
|
391 |
# codes_emb.append(model.encode(x["examples"]))
|
392 |
# codes_emb = np.mean(codes_emb, axis=1)
|
@@ -690,10 +698,11 @@ def reload(chosen_model_id):
|
|
690 |
global codes_emb
|
691 |
|
692 |
if chosen_model_id != model_id:
|
693 |
-
|
694 |
-
|
|
|
695 |
# codes_emb = model.encode([x[6:] for x in codes])
|
696 |
-
codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
|
697 |
# codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
|
698 |
return f"Model {chosen_model_id} has been succesfully loaded!"
|
699 |
return f"Model {chosen_model_id} is ready!"
|
|
|
362 |
"sentence-transformers/distiluse-base-multilingual-cased-v2",
|
363 |
"Alibaba-NLP/gte-multilingual-base",
|
364 |
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
365 |
+
"jinaai/jina-reranker-v2-base-multilingual",
|
366 |
"BAAI/bge-reranker-v2-m3",
|
|
|
367 |
]
|
368 |
# model_id = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
369 |
# model_id = "Alibaba-NLP/gte-multilingual-base"
|
|
|
373 |
# model_id = "sentence-transformers/distiluse-base-multilingual-cased-v2"
|
374 |
|
375 |
model_id = model_ids[-1]
|
376 |
+
model = None
|
377 |
+
codes_emb = None
|
378 |
|
379 |
+
def load_model(model_id):
|
380 |
+
global model
|
381 |
+
global codes_emb
|
382 |
+
if model_id in model_ids[-2:]:
|
383 |
+
model = CrossEncoder(
|
384 |
+
# "jinaai/jina-reranker-v2-base-multilingual",
|
385 |
+
# "BAAI/bge-reranker-v2-m3",
|
386 |
+
model_id,
|
387 |
+
automodel_args={"torch_dtype": "auto"},
|
388 |
+
trust_remote_code=True,
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
model = SentenceTransformer(model_id, trust_remote_code=True)
|
392 |
+
# codes_emb = model.encode([x[6:] for x in codes])
|
393 |
+
codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
|
394 |
+
# codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
|
395 |
+
|
396 |
+
load_model(model_id)
|
397 |
|
|
|
|
|
|
|
398 |
# for x in examples:
|
399 |
# codes_emb.append(model.encode(x["examples"]))
|
400 |
# codes_emb = np.mean(codes_emb, axis=1)
|
|
|
698 |
global codes_emb
|
699 |
|
700 |
if chosen_model_id != model_id:
|
701 |
+
load_model(model_id)
|
702 |
+
# model = SentenceTransformer(chosen_model_id, trust_remote_code=True)
|
703 |
+
# model_id = chosen_model_id
|
704 |
# codes_emb = model.encode([x[6:] for x in codes])
|
705 |
+
# codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
|
706 |
# codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
|
707 |
return f"Model {chosen_model_id} has been succesfully loaded!"
|
708 |
return f"Model {chosen_model_id} is ready!"
|