Spaces:
Runtime error
Runtime error
File size: 25,275 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import os, sys
# append parent directory to system path
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))); os.environ['FIRECRAWL_API_KEY'] = "fc-84b370ccfad44beabc686b38f1769692";
import asyncio
# import nest_asyncio
# nest_asyncio.apply()
import time
import json
import os
import re
from typing import Dict, List
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CacheMode
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_filter_strategy import BM25ContentFilter, PruningContentFilter
from crawl4ai.extraction_strategy import (
JsonCssExtractionStrategy,
LLMExtractionStrategy,
)
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
print("Twitter: @unclecode")
print("Website: https://crawl4ai.com")
async def simple_crawl():
print("\n--- Basic Usage ---")
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(url="https://www.nbcnews.com/business", cache_mode= CacheMode.BYPASS)
print(result.markdown[:500]) # Print first 500 characters
async def simple_example_with_running_js_code():
print("\n--- Executing JavaScript and Using CSS Selectors ---")
# New code to handle the wait_for parameter
wait_for = """() => {
return Array.from(document.querySelectorAll('article.tease-card')).length > 10;
}"""
# wait_for can be also just a css selector
# wait_for = "article.tease-card:nth-child(10)"
async with AsyncWebCrawler(verbose=True) as crawler:
js_code = [
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
]
result = await crawler.arun(
url="https://www.nbcnews.com/business",
js_code=js_code,
# wait_for=wait_for,
cache_mode=CacheMode.BYPASS,
)
print(result.markdown[:500]) # Print first 500 characters
async def simple_example_with_css_selector():
print("\n--- Using CSS Selectors ---")
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
css_selector=".wide-tease-item__description",
cache_mode=CacheMode.BYPASS,
)
print(result.markdown[:500]) # Print first 500 characters
async def use_proxy():
print("\n--- Using a Proxy ---")
print(
"Note: Replace 'http://your-proxy-url:port' with a working proxy to run this example."
)
# Uncomment and modify the following lines to use a proxy
async with AsyncWebCrawler(verbose=True, proxy="http://your-proxy-url:port") as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
cache_mode= CacheMode.BYPASS
)
if result.success:
print(result.markdown[:500]) # Print first 500 characters
async def capture_and_save_screenshot(url: str, output_path: str):
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url=url,
screenshot=True,
cache_mode= CacheMode.BYPASS
)
if result.success and result.screenshot:
import base64
# Decode the base64 screenshot data
screenshot_data = base64.b64decode(result.screenshot)
# Save the screenshot as a JPEG file
with open(output_path, 'wb') as f:
f.write(screenshot_data)
print(f"Screenshot saved successfully to {output_path}")
else:
print("Failed to capture screenshot")
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(
..., description="Fee for output token for the OpenAI model."
)
async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: Dict[str, str] = None):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
# extra_args = {}
extra_args={
"temperature": 0,
"top_p": 0.9,
"max_tokens": 2000,
# any other supported parameters for litellm
}
if extra_headers:
extra_args["extra_headers"] = extra_headers
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/",
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider=provider,
api_token=api_token,
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content. One extracted model JSON format should look like this:
{"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}.""",
extra_args=extra_args
),
cache_mode=CacheMode.BYPASS,
)
print(result.extracted_content)
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src"
}
]
}
async with AsyncWebCrawler(
headless=True,
verbose=True
) as crawler:
# Create the JavaScript that handles clicking multiple times
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
// scroll to the tab
tab.scrollIntoView();
tab.click();
// Wait for content to load and animations to complete
await new Promise(r => setTimeout(r, 500));
}
})();
"""
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology",
extraction_strategy=JsonCssExtractionStrategy(schema, verbose=True),
js_code=[js_click_tabs],
cache_mode=CacheMode.BYPASS
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
# Advanced Session-Based Crawling with Dynamic Content 🔄
async def crawl_dynamic_content_pages_method_1():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
first_commit = ""
async def on_execution_started(page):
nonlocal first_commit
try:
while True:
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
commit = await commit.evaluate("(element) => element.textContent")
commit = re.sub(r"\s+", "", commit)
if commit and commit != first_commit:
first_commit = commit
break
await asyncio.sleep(0.5)
except Exception as e:
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
async with AsyncWebCrawler(verbose=True) as crawler:
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
(() => {
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
})();
"""
for page in range(3): # Crawl 3 pages
result = await crawler.arun(
url=url,
session_id=session_id,
css_selector="li.Box-sc-g0xbh4-0",
js=js_next_page if page > 0 else None,
cache_mode=CacheMode.BYPASS,
js_only=page > 0,
headless=False,
)
assert result.success, f"Failed to crawl page {page + 1}"
soup = BeautifulSoup(result.cleaned_html, "html.parser")
commits = soup.select("li")
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
await crawler.crawler_strategy.kill_session(session_id)
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
async def crawl_dynamic_content_pages_method_2():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
async with AsyncWebCrawler(verbose=True) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
last_commit = ""
js_next_page_and_wait = """
(async () => {
const getCurrentCommit = () => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
return commits.length > 0 ? commits[0].textContent.trim() : null;
};
const initialCommit = getCurrentCommit();
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
// Poll for changes
while (true) {
await new Promise(resolve => setTimeout(resolve, 100)); // Wait 100ms
const newCommit = getCurrentCommit();
if (newCommit && newCommit !== initialCommit) {
break;
}
}
})();
"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)
for page in range(3): # Crawl 3 pages
result = await crawler.arun(
url=url,
session_id=session_id,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page_and_wait if page > 0 else None,
js_only=page > 0,
cache_mode=CacheMode.BYPASS,
headless=False,
)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
await crawler.crawler_strategy.kill_session(session_id)
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
async def crawl_dynamic_content_pages_method_3():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution using `wait_for` ---")
async with AsyncWebCrawler(verbose=True) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
if (commits.length > 0) {
window.firstCommit = commits[0].textContent.trim();
}
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
"""
wait_for = """() => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
if (commits.length === 0) return false;
const firstCommit = commits[0].textContent.trim();
return firstCommit !== window.firstCommit;
}"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)
for page in range(3): # Crawl 3 pages
result = await crawler.arun(
url=url,
session_id=session_id,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page if page > 0 else None,
wait_for=wait_for if page > 0 else None,
js_only=page > 0,
cache_mode=CacheMode.BYPASS,
headless=False,
)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
await crawler.crawler_strategy.kill_session(session_id)
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
async def crawl_custom_browser_type():
# Use Firefox
start = time.time()
async with AsyncWebCrawler(browser_type="firefox", verbose=True, headless = True) as crawler:
result = await crawler.arun(url="https://www.example.com", cache_mode= CacheMode.BYPASS)
print(result.markdown[:500])
print("Time taken: ", time.time() - start)
# Use WebKit
start = time.time()
async with AsyncWebCrawler(browser_type="webkit", verbose=True, headless = True) as crawler:
result = await crawler.arun(url="https://www.example.com", cache_mode= CacheMode.BYPASS)
print(result.markdown[:500])
print("Time taken: ", time.time() - start)
# Use Chromium (default)
start = time.time()
async with AsyncWebCrawler(verbose=True, headless = True) as crawler:
result = await crawler.arun(url="https://www.example.com", cache_mode= CacheMode.BYPASS)
print(result.markdown[:500])
print("Time taken: ", time.time() - start)
async def crawl_with_user_simultion():
async with AsyncWebCrawler(verbose=True, headless=True) as crawler:
url = "YOUR-URL-HERE"
result = await crawler.arun(
url=url,
cache_mode=CacheMode.BYPASS,
magic = True, # Automatically detects and removes overlays, popups, and other elements that block content
# simulate_user = True,# Causes a series of random mouse movements and clicks to simulate user interaction
# override_navigator = True # Overrides the navigator object to make it look like a real user
)
print(result.markdown)
async def speed_comparison():
# print("\n--- Speed Comparison ---")
# print("Firecrawl (simulated):")
# print("Time taken: 7.02 seconds")
# print("Content length: 42074 characters")
# print("Images found: 49")
# print()
# Simulated Firecrawl performance
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key=os.environ['FIRECRAWL_API_KEY'])
start = time.time()
scrape_status = app.scrape_url(
'https://www.nbcnews.com/business',
params={'formats': ['markdown', 'html']}
)
end = time.time()
print("Firecrawl:")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(scrape_status['markdown'])} characters")
print(f"Images found: {scrape_status['markdown'].count('cldnry.s-nbcnews.com')}")
print()
async with AsyncWebCrawler() as crawler:
# Crawl4AI simple crawl
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
word_count_threshold=0,
cache_mode=CacheMode.BYPASS,
verbose=False,
)
end = time.time()
print("Crawl4AI (simple crawl):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Crawl4AI with advanced content filtering
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
word_count_threshold=0,
markdown_generator=DefaultMarkdownGenerator(
content_filter = PruningContentFilter(threshold=0.48, threshold_type="fixed", min_word_threshold=0)
# content_filter=BM25ContentFilter(user_query=None, bm25_threshold=1.0)
),
cache_mode=CacheMode.BYPASS,
verbose=False,
)
end = time.time()
print("Crawl4AI (Markdown Plus):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown_v2.raw_markdown)} characters")
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Crawl4AI with JavaScript execution
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
js_code=[
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
],
word_count_threshold=0,
cache_mode=CacheMode.BYPASS,
markdown_generator=DefaultMarkdownGenerator(
content_filter = PruningContentFilter(threshold=0.48, threshold_type="fixed", min_word_threshold=0)
# content_filter=BM25ContentFilter(user_query=None, bm25_threshold=1.0)
),
verbose=False,
)
end = time.time()
print("Crawl4AI (with JavaScript execution):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown)} characters")
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print("\nNote on Speed Comparison:")
print("The speed test conducted here may not reflect optimal conditions.")
print("When we call Firecrawl's API, we're seeing its best performance,")
print("while Crawl4AI's performance is limited by the local network speed.")
print("For a more accurate comparison, it's recommended to run these tests")
print("on servers with a stable and fast internet connection.")
print("Despite these limitations, Crawl4AI still demonstrates faster performance.")
print("If you run these tests in an environment with better network conditions,")
print("you may observe an even more significant speed advantage for Crawl4AI.")
async def generate_knowledge_graph():
class Entity(BaseModel):
name: str
description: str
class Relationship(BaseModel):
entity1: Entity
entity2: Entity
description: str
relation_type: str
class KnowledgeGraph(BaseModel):
entities: List[Entity]
relationships: List[Relationship]
extraction_strategy = LLMExtractionStrategy(
provider='openai/gpt-4o-mini', # Or any other provider, including Ollama and open source models
api_token=os.getenv('OPENAI_API_KEY'), # In case of Ollama just pass "no-token"
schema=KnowledgeGraph.model_json_schema(),
extraction_type="schema",
instruction="""Extract entities and relationships from the given text."""
)
async with AsyncWebCrawler() as crawler:
url = "https://paulgraham.com/love.html"
result = await crawler.arun(
url=url,
cache_mode=CacheMode.BYPASS,
extraction_strategy=extraction_strategy,
# magic=True
)
# print(result.extracted_content)
with open(os.path.join(__location__, "kb.json"), "w") as f:
f.write(result.extracted_content)
async def fit_markdown_remove_overlay():
async with AsyncWebCrawler(
headless=True, # Set to False to see what is happening
verbose=True,
user_agent_mode="random",
user_agent_generator_config={
"device_type": "mobile",
"os_type": "android"
},
) as crawler:
result = await crawler.arun(
url='https://www.kidocode.com/degrees/technology',
cache_mode=CacheMode.BYPASS,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48, threshold_type="fixed", min_word_threshold=0
),
options={
"ignore_links": True
}
),
# markdown_generator=DefaultMarkdownGenerator(
# content_filter=BM25ContentFilter(user_query="", bm25_threshold=1.0),
# options={
# "ignore_links": True
# }
# ),
)
if result.success:
print(len(result.markdown_v2.raw_markdown))
print(len(result.markdown_v2.markdown_with_citations))
print(len(result.markdown_v2.fit_markdown))
# Save clean html
with open(os.path.join(__location__, "output/cleaned_html.html"), "w") as f:
f.write(result.cleaned_html)
with open(os.path.join(__location__, "output/output_raw_markdown.md"), "w") as f:
f.write(result.markdown_v2.raw_markdown)
with open(os.path.join(__location__, "output/output_markdown_with_citations.md"), "w") as f:
f.write(result.markdown_v2.markdown_with_citations)
with open(os.path.join(__location__, "output/output_fit_markdown.md"), "w") as f:
f.write(result.markdown_v2.fit_markdown)
print("Done")
async def main():
# await extract_structured_data_using_llm("openai/gpt-4o", os.getenv("OPENAI_API_KEY"))
# await simple_crawl()
# await simple_example_with_running_js_code()
# await simple_example_with_css_selector()
# # await use_proxy()
# await capture_and_save_screenshot("https://www.example.com", os.path.join(__location__, "tmp/example_screenshot.jpg"))
# await extract_structured_data_using_css_extractor()
# LLM extraction examples
# await extract_structured_data_using_llm()
# await extract_structured_data_using_llm("huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct", os.getenv("HUGGINGFACE_API_KEY"))
# await extract_structured_data_using_llm("ollama/llama3.2")
# You always can pass custom headers to the extraction strategy
# custom_headers = {
# "Authorization": "Bearer your-custom-token",
# "X-Custom-Header": "Some-Value"
# }
# await extract_structured_data_using_llm(extra_headers=custom_headers)
# await crawl_dynamic_content_pages_method_1()
# await crawl_dynamic_content_pages_method_2()
await crawl_dynamic_content_pages_method_3()
# await crawl_custom_browser_type()
# await speed_comparison()
if __name__ == "__main__":
asyncio.run(main())
|