Spaces:
Runtime error
Runtime error
File size: 59,524 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 |
import time
from urllib.parse import urlparse
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup, Comment, element, Tag, NavigableString
import json
import html
import re
import os
import platform
from .prompts import PROMPT_EXTRACT_BLOCKS
from .config import *
from pathlib import Path
from typing import Dict, Any
from urllib.parse import urljoin
import requests
from requests.exceptions import InvalidSchema
from typing import Optional, Tuple, Dict, Any
import xxhash
from colorama import Fore, Style, init
import textwrap
import cProfile
import pstats
from functools import wraps
import asyncio
class InvalidCSSSelectorError(Exception):
pass
def create_box_message(message: str, type: str = "info", width: int = 120, add_newlines: bool = True, double_line: bool = False) -> str:
"""
Create a styled message box with colored borders and formatted text.
How it works:
1. Determines box style and colors based on the message type (e.g., info, warning).
2. Wraps text to fit within the specified width.
3. Constructs a box using characters (single or double lines) with appropriate formatting.
4. Adds optional newlines before and after the box.
Args:
message (str): The message to display inside the box.
type (str): Type of the message (e.g., "info", "warning", "error", "success"). Defaults to "info".
width (int): Width of the box. Defaults to 120.
add_newlines (bool): Whether to add newlines before and after the box. Defaults to True.
double_line (bool): Whether to use double lines for the box border. Defaults to False.
Returns:
str: A formatted string containing the styled message box.
"""
init()
# Define border and text colors for different types
styles = {
"warning": (Fore.YELLOW, Fore.LIGHTYELLOW_EX, "⚠"),
"info": (Fore.BLUE, Fore.LIGHTBLUE_EX, "ℹ"),
"success": (Fore.GREEN, Fore.LIGHTGREEN_EX, "✓"),
"error": (Fore.RED, Fore.LIGHTRED_EX, "×"),
}
border_color, text_color, prefix = styles.get(type.lower(), styles["info"])
# Define box characters based on line style
box_chars = {
"single": ("─", "│", "┌", "┐", "└", "┘"),
"double": ("═", "║", "╔", "╗", "╚", "╝")
}
line_style = "double" if double_line else "single"
h_line, v_line, tl, tr, bl, br = box_chars[line_style]
# Process lines with lighter text color
formatted_lines = []
raw_lines = message.split('\n')
if raw_lines:
first_line = f"{prefix} {raw_lines[0].strip()}"
wrapped_first = textwrap.fill(first_line, width=width-4)
formatted_lines.extend(wrapped_first.split('\n'))
for line in raw_lines[1:]:
if line.strip():
wrapped = textwrap.fill(f" {line.strip()}", width=width-4)
formatted_lines.extend(wrapped.split('\n'))
else:
formatted_lines.append("")
# Create the box with colored borders and lighter text
horizontal_line = h_line * (width - 1)
box = [
f"{border_color}{tl}{horizontal_line}{tr}",
*[f"{border_color}{v_line}{text_color} {line:<{width-2}}{border_color}{v_line}" for line in formatted_lines],
f"{border_color}{bl}{horizontal_line}{br}{Style.RESET_ALL}"
]
result = "\n".join(box)
if add_newlines:
result = f"\n{result}\n"
return result
def calculate_semaphore_count():
"""
Calculate the optimal semaphore count based on system resources.
How it works:
1. Determines the number of CPU cores and total system memory.
2. Sets a base count as half of the available CPU cores.
3. Limits the count based on memory, assuming 2GB per semaphore instance.
4. Returns the minimum value between CPU and memory-based limits.
Returns:
int: The calculated semaphore count.
"""
cpu_count = os.cpu_count()
memory_gb = get_system_memory() / (1024 ** 3) # Convert to GB
base_count = max(1, cpu_count // 2)
memory_based_cap = int(memory_gb / 2) # Assume 2GB per instance
return min(base_count, memory_based_cap)
def get_system_memory():
"""
Get the total system memory in bytes.
How it works:
1. Detects the operating system.
2. Reads memory information from system-specific commands or files.
3. Converts the memory to bytes for uniformity.
Returns:
int: The total system memory in bytes.
Raises:
OSError: If the operating system is unsupported.
"""
system = platform.system()
if system == "Linux":
with open('/proc/meminfo', 'r') as mem:
for line in mem:
if line.startswith('MemTotal:'):
return int(line.split()[1]) * 1024 # Convert KB to bytes
elif system == "Darwin": # macOS
import subprocess
output = subprocess.check_output(['sysctl', '-n', 'hw.memsize']).decode('utf-8')
return int(output.strip())
elif system == "Windows":
import ctypes
kernel32 = ctypes.windll.kernel32
c_ulonglong = ctypes.c_ulonglong
class MEMORYSTATUSEX(ctypes.Structure):
_fields_ = [
('dwLength', ctypes.c_ulong),
('dwMemoryLoad', ctypes.c_ulong),
('ullTotalPhys', c_ulonglong),
('ullAvailPhys', c_ulonglong),
('ullTotalPageFile', c_ulonglong),
('ullAvailPageFile', c_ulonglong),
('ullTotalVirtual', c_ulonglong),
('ullAvailVirtual', c_ulonglong),
('ullAvailExtendedVirtual', c_ulonglong),
]
memoryStatus = MEMORYSTATUSEX()
memoryStatus.dwLength = ctypes.sizeof(MEMORYSTATUSEX)
kernel32.GlobalMemoryStatusEx(ctypes.byref(memoryStatus))
return memoryStatus.ullTotalPhys
else:
raise OSError("Unsupported operating system")
def get_home_folder():
"""
Get or create the home folder for Crawl4AI configuration and cache.
How it works:
1. Uses environment variables or defaults to the user's home directory.
2. Creates `.crawl4ai` and its subdirectories (`cache`, `models`) if they don't exist.
3. Returns the path to the home folder.
Returns:
str: The path to the Crawl4AI home folder.
"""
home_folder = os.path.join(os.getenv("CRAWL4_AI_BASE_DIRECTORY", os.getenv("CRAWL4_AI_BASE_DIRECTORY", Path.home())), ".crawl4ai")
os.makedirs(home_folder, exist_ok=True)
os.makedirs(f"{home_folder}/cache", exist_ok=True)
os.makedirs(f"{home_folder}/models", exist_ok=True)
return home_folder
def beautify_html(escaped_html):
"""
Beautifies an escaped HTML string.
Parameters:
escaped_html (str): A string containing escaped HTML.
Returns:
str: A beautifully formatted HTML string.
"""
# Unescape the HTML string
unescaped_html = html.unescape(escaped_html)
# Use BeautifulSoup to parse and prettify the HTML
soup = BeautifulSoup(unescaped_html, 'html.parser')
pretty_html = soup.prettify()
return pretty_html
def split_and_parse_json_objects(json_string):
"""
Splits a JSON string which is a list of objects and tries to parse each object.
Parameters:
json_string (str): A string representation of a list of JSON objects, e.g., '[{...}, {...}, ...]'.
Returns:
tuple: A tuple containing two lists:
- First list contains all successfully parsed JSON objects.
- Second list contains the string representations of all segments that couldn't be parsed.
"""
# Trim the leading '[' and trailing ']'
if json_string.startswith('[') and json_string.endswith(']'):
json_string = json_string[1:-1].strip()
# Split the string into segments that look like individual JSON objects
segments = []
depth = 0
start_index = 0
for i, char in enumerate(json_string):
if char == '{':
if depth == 0:
start_index = i
depth += 1
elif char == '}':
depth -= 1
if depth == 0:
segments.append(json_string[start_index:i+1])
# Try parsing each segment
parsed_objects = []
unparsed_segments = []
for segment in segments:
try:
obj = json.loads(segment)
parsed_objects.append(obj)
except json.JSONDecodeError:
unparsed_segments.append(segment)
return parsed_objects, unparsed_segments
def sanitize_html(html):
"""
Sanitize an HTML string by escaping quotes.
How it works:
1. Replaces all unwanted and special characters with an empty string.
2. Escapes double and single quotes for safe usage.
Args:
html (str): The HTML string to sanitize.
Returns:
str: The sanitized HTML string.
"""
# Replace all unwanted and special characters with an empty string
sanitized_html = html
# sanitized_html = re.sub(r'[^\w\s.,;:!?=\[\]{}()<>\/\\\-"]', '', html)
# Escape all double and single quotes
sanitized_html = sanitized_html.replace('"', '\\"').replace("'", "\\'")
return sanitized_html
def sanitize_input_encode(text: str) -> str:
"""Sanitize input to handle potential encoding issues."""
try:
try:
if not text:
return ''
# Attempt to encode and decode as UTF-8 to handle potential encoding issues
return text.encode('utf-8', errors='ignore').decode('utf-8')
except UnicodeEncodeError as e:
print(f"Warning: Encoding issue detected. Some characters may be lost. Error: {e}")
# Fall back to ASCII if UTF-8 fails
return text.encode('ascii', errors='ignore').decode('ascii')
except Exception as e:
raise ValueError(f"Error sanitizing input: {str(e)}") from e
def escape_json_string(s):
"""
Escapes characters in a string to be JSON safe.
Parameters:
s (str): The input string to be escaped.
Returns:
str: The escaped string, safe for JSON encoding.
"""
# Replace problematic backslash first
s = s.replace('\\', '\\\\')
# Replace the double quote
s = s.replace('"', '\\"')
# Escape control characters
s = s.replace('\b', '\\b')
s = s.replace('\f', '\\f')
s = s.replace('\n', '\\n')
s = s.replace('\r', '\\r')
s = s.replace('\t', '\\t')
# Additional problematic characters
# Unicode control characters
s = re.sub(r'[\x00-\x1f\x7f-\x9f]', lambda x: '\\u{:04x}'.format(ord(x.group())), s)
return s
def replace_inline_tags(soup, tags, only_text=False):
"""
Replace inline HTML tags with Markdown-style equivalents.
How it works:
1. Maps specific tags (e.g., <b>, <i>) to Markdown syntax.
2. Finds and replaces all occurrences of these tags in the provided BeautifulSoup object.
3. Optionally replaces tags with their text content only.
Args:
soup (BeautifulSoup): Parsed HTML content.
tags (List[str]): List of tags to replace.
only_text (bool): Whether to replace tags with plain text. Defaults to False.
Returns:
BeautifulSoup: Updated BeautifulSoup object with replaced tags.
"""
tag_replacements = {
'b': lambda tag: f"**{tag.text}**",
'i': lambda tag: f"*{tag.text}*",
'u': lambda tag: f"__{tag.text}__",
'span': lambda tag: f"{tag.text}",
'del': lambda tag: f"~~{tag.text}~~",
'ins': lambda tag: f"++{tag.text}++",
'sub': lambda tag: f"~{tag.text}~",
'sup': lambda tag: f"^^{tag.text}^^",
'strong': lambda tag: f"**{tag.text}**",
'em': lambda tag: f"*{tag.text}*",
'code': lambda tag: f"`{tag.text}`",
'kbd': lambda tag: f"`{tag.text}`",
'var': lambda tag: f"_{tag.text}_",
's': lambda tag: f"~~{tag.text}~~",
'q': lambda tag: f'"{tag.text}"',
'abbr': lambda tag: f"{tag.text} ({tag.get('title', '')})",
'cite': lambda tag: f"_{tag.text}_",
'dfn': lambda tag: f"_{tag.text}_",
'time': lambda tag: f"{tag.text}",
'small': lambda tag: f"<small>{tag.text}</small>",
'mark': lambda tag: f"=={tag.text}=="
}
replacement_data = [(tag, tag_replacements.get(tag, lambda t: t.text)) for tag in tags]
for tag_name, replacement_func in replacement_data:
for tag in soup.find_all(tag_name):
replacement_text = tag.text if only_text else replacement_func(tag)
tag.replace_with(replacement_text)
return soup
# for tag_name in tags:
# for tag in soup.find_all(tag_name):
# if not only_text:
# replacement_text = tag_replacements.get(tag_name, lambda t: t.text)(tag)
# tag.replace_with(replacement_text)
# else:
# tag.replace_with(tag.text)
# return soup
def get_content_of_website(url, html, word_count_threshold = MIN_WORD_THRESHOLD, css_selector = None, **kwargs):
"""
Extract structured content, media, and links from website HTML.
How it works:
1. Parses the HTML content using BeautifulSoup.
2. Extracts internal/external links and media (images, videos, audios).
3. Cleans the content by removing unwanted tags and attributes.
4. Converts cleaned HTML to Markdown.
5. Collects metadata and returns the extracted information.
Args:
url (str): The website URL.
html (str): The HTML content of the website.
word_count_threshold (int): Minimum word count for content inclusion. Defaults to MIN_WORD_THRESHOLD.
css_selector (Optional[str]): CSS selector to extract specific content. Defaults to None.
Returns:
Dict[str, Any]: Extracted content including Markdown, cleaned HTML, media, links, and metadata.
"""
try:
if not html:
return None
# Parse HTML content with BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
# Get the content within the <body> tag
body = soup.body
# If css_selector is provided, extract content based on the selector
if css_selector:
selected_elements = body.select(css_selector)
if not selected_elements:
raise InvalidCSSSelectorError(f"Invalid CSS selector , No elements found for CSS selector: {css_selector}")
div_tag = soup.new_tag('div')
for el in selected_elements:
div_tag.append(el)
body = div_tag
links = {
'internal': [],
'external': []
}
# Extract all internal and external links
for a in body.find_all('a', href=True):
href = a['href']
url_base = url.split('/')[2]
if href.startswith('http') and url_base not in href:
links['external'].append({
'href': href,
'text': a.get_text()
})
else:
links['internal'].append(
{
'href': href,
'text': a.get_text()
}
)
# Remove script, style, and other tags that don't carry useful content from body
for tag in body.find_all(['script', 'style', 'link', 'meta', 'noscript']):
tag.decompose()
# Remove all attributes from remaining tags in body, except for img tags
for tag in body.find_all():
if tag.name != 'img':
tag.attrs = {}
# Extract all img tgas int0 [{src: '', alt: ''}]
media = {
'images': [],
'videos': [],
'audios': []
}
for img in body.find_all('img'):
media['images'].append({
'src': img.get('src'),
'alt': img.get('alt'),
"type": "image"
})
# Extract all video tags into [{src: '', alt: ''}]
for video in body.find_all('video'):
media['videos'].append({
'src': video.get('src'),
'alt': video.get('alt'),
"type": "video"
})
# Extract all audio tags into [{src: '', alt: ''}]
for audio in body.find_all('audio'):
media['audios'].append({
'src': audio.get('src'),
'alt': audio.get('alt'),
"type": "audio"
})
# Replace images with their alt text or remove them if no alt text is available
for img in body.find_all('img'):
alt_text = img.get('alt')
if alt_text:
img.replace_with(soup.new_string(alt_text))
else:
img.decompose()
# Create a function that replace content of all"pre" tag with its inner text
def replace_pre_tags_with_text(node):
for child in node.find_all('pre'):
# set child inner html to its text
child.string = child.get_text()
return node
# Replace all "pre" tags with their inner text
body = replace_pre_tags_with_text(body)
# Replace inline tags with their text content
body = replace_inline_tags(
body,
['b', 'i', 'u', 'span', 'del', 'ins', 'sub', 'sup', 'strong', 'em', 'code', 'kbd', 'var', 's', 'q', 'abbr', 'cite', 'dfn', 'time', 'small', 'mark'],
only_text=kwargs.get('only_text', False)
)
# Recursively remove empty elements, their parent elements, and elements with word count below threshold
def remove_empty_and_low_word_count_elements(node, word_count_threshold):
for child in node.contents:
if isinstance(child, element.Tag):
remove_empty_and_low_word_count_elements(child, word_count_threshold)
word_count = len(child.get_text(strip=True).split())
if (len(child.contents) == 0 and not child.get_text(strip=True)) or word_count < word_count_threshold:
child.decompose()
return node
body = remove_empty_and_low_word_count_elements(body, word_count_threshold)
def remove_small_text_tags(body: Tag, word_count_threshold: int = MIN_WORD_THRESHOLD):
# We'll use a list to collect all tags that don't meet the word count requirement
tags_to_remove = []
# Traverse all tags in the body
for tag in body.find_all(True): # True here means all tags
# Check if the tag contains text and if it's not just whitespace
if tag.string and tag.string.strip():
# Split the text by spaces and count the words
word_count = len(tag.string.strip().split())
# If the word count is less than the threshold, mark the tag for removal
if word_count < word_count_threshold:
tags_to_remove.append(tag)
# Remove all marked tags from the tree
for tag in tags_to_remove:
tag.decompose() # or tag.extract() to remove and get the element
return body
# Remove small text tags
body = remove_small_text_tags(body, word_count_threshold)
def is_empty_or_whitespace(tag: Tag):
if isinstance(tag, NavigableString):
return not tag.strip()
# Check if the tag itself is empty or all its children are empty/whitespace
if not tag.contents:
return True
return all(is_empty_or_whitespace(child) for child in tag.contents)
def remove_empty_tags(body: Tag):
# Continue processing until no more changes are made
changes = True
while changes:
changes = False
# Collect all tags that are empty or contain only whitespace
empty_tags = [tag for tag in body.find_all(True) if is_empty_or_whitespace(tag)]
for tag in empty_tags:
# If a tag is empty, decompose it
tag.decompose()
changes = True # Mark that a change was made
return body
# Remove empty tags
body = remove_empty_tags(body)
# Flatten nested elements with only one child of the same type
def flatten_nested_elements(node):
for child in node.contents:
if isinstance(child, element.Tag):
flatten_nested_elements(child)
if len(child.contents) == 1 and child.contents[0].name == child.name:
# print('Flattening:', child.name)
child_content = child.contents[0]
child.replace_with(child_content)
return node
body = flatten_nested_elements(body)
# Remove comments
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
comment.extract()
# Remove consecutive empty newlines and replace multiple spaces with a single space
cleaned_html = str(body).replace('\n\n', '\n').replace(' ', ' ')
# Sanitize the cleaned HTML content
cleaned_html = sanitize_html(cleaned_html)
# sanitized_html = escape_json_string(cleaned_html)
# Convert cleaned HTML to Markdown
h = html2text.HTML2Text()
h = CustomHTML2Text()
h.ignore_links = True
markdown = h.handle(cleaned_html)
markdown = markdown.replace(' ```', '```')
try:
meta = extract_metadata(html, soup)
except Exception as e:
print('Error extracting metadata:', str(e))
meta = {}
# Return the Markdown content
return{
'markdown': markdown,
'cleaned_html': cleaned_html,
'success': True,
'media': media,
'links': links,
'metadata': meta
}
except Exception as e:
print('Error processing HTML content:', str(e))
raise InvalidCSSSelectorError(f"Invalid CSS selector: {css_selector}") from e
def get_content_of_website_optimized(url: str, html: str, word_count_threshold: int = MIN_WORD_THRESHOLD, css_selector: str = None, **kwargs) -> Dict[str, Any]:
if not html:
return None
soup = BeautifulSoup(html, 'html.parser')
body = soup.body
image_description_min_word_threshold = kwargs.get('image_description_min_word_threshold', IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD)
for tag in kwargs.get('excluded_tags', []) or []:
for el in body.select(tag):
el.decompose()
if css_selector:
selected_elements = body.select(css_selector)
if not selected_elements:
raise InvalidCSSSelectorError(f"Invalid CSS selector, No elements found for CSS selector: {css_selector}")
body = soup.new_tag('div')
for el in selected_elements:
body.append(el)
links = {'internal': [], 'external': []}
media = {'images': [], 'videos': [], 'audios': []}
# Extract meaningful text for media files from closest parent
def find_closest_parent_with_useful_text(tag):
current_tag = tag
while current_tag:
current_tag = current_tag.parent
# Get the text content from the parent tag
if current_tag:
text_content = current_tag.get_text(separator=' ',strip=True)
# Check if the text content has at least word_count_threshold
if len(text_content.split()) >= image_description_min_word_threshold:
return text_content
return None
def process_image(img, url, index, total_images):
#Check if an image has valid display and inside undesired html elements
def is_valid_image(img, parent, parent_classes):
style = img.get('style', '')
src = img.get('src', '')
classes_to_check = ['button', 'icon', 'logo']
tags_to_check = ['button', 'input']
return all([
'display:none' not in style,
src,
not any(s in var for var in [src, img.get('alt', ''), *parent_classes] for s in classes_to_check),
parent.name not in tags_to_check
])
#Score an image for it's usefulness
def score_image_for_usefulness(img, base_url, index, images_count):
# Function to parse image height/width value and units
def parse_dimension(dimension):
if dimension:
match = re.match(r"(\d+)(\D*)", dimension)
if match:
number = int(match.group(1))
unit = match.group(2) or 'px' # Default unit is 'px' if not specified
return number, unit
return None, None
# Fetch image file metadata to extract size and extension
def fetch_image_file_size(img, base_url):
#If src is relative path construct full URL, if not it may be CDN URL
img_url = urljoin(base_url,img.get('src'))
try:
response = requests.head(img_url)
if response.status_code == 200:
return response.headers.get('Content-Length',None)
else:
print(f"Failed to retrieve file size for {img_url}")
return None
except InvalidSchema as e:
return None
finally:
return
image_height = img.get('height')
height_value, height_unit = parse_dimension(image_height)
image_width = img.get('width')
width_value, width_unit = parse_dimension(image_width)
image_size = 0 #int(fetch_image_file_size(img,base_url) or 0)
image_format = os.path.splitext(img.get('src',''))[1].lower()
# Remove . from format
image_format = image_format.strip('.')
score = 0
if height_value:
if height_unit == 'px' and height_value > 150:
score += 1
if height_unit in ['%','vh','vmin','vmax'] and height_value >30:
score += 1
if width_value:
if width_unit == 'px' and width_value > 150:
score += 1
if width_unit in ['%','vh','vmin','vmax'] and width_value >30:
score += 1
if image_size > 10000:
score += 1
if img.get('alt') != '':
score+=1
if any(image_format==format for format in ['jpg','png','webp']):
score+=1
if index/images_count<0.5:
score+=1
return score
if not is_valid_image(img, img.parent, img.parent.get('class', [])):
return None
score = score_image_for_usefulness(img, url, index, total_images)
if score <= IMAGE_SCORE_THRESHOLD:
return None
return {
'src': img.get('src', '').replace('\\"', '"').strip(),
'alt': img.get('alt', ''),
'desc': find_closest_parent_with_useful_text(img),
'score': score,
'type': 'image'
}
def process_element(element: element.PageElement) -> bool:
try:
if isinstance(element, NavigableString):
if isinstance(element, Comment):
element.extract()
return False
if element.name in ['script', 'style', 'link', 'meta', 'noscript']:
element.decompose()
return False
keep_element = False
if element.name == 'a' and element.get('href'):
href = element['href']
url_base = url.split('/')[2]
link_data = {'href': href, 'text': element.get_text()}
if href.startswith('http') and url_base not in href:
links['external'].append(link_data)
else:
links['internal'].append(link_data)
keep_element = True
elif element.name == 'img':
return True # Always keep image elements
elif element.name in ['video', 'audio']:
media[f"{element.name}s"].append({
'src': element.get('src'),
'alt': element.get('alt'),
'type': element.name,
'description': find_closest_parent_with_useful_text(element)
})
source_tags = element.find_all('source')
for source_tag in source_tags:
media[f"{element.name}s"].append({
'src': source_tag.get('src'),
'alt': element.get('alt'),
'type': element.name,
'description': find_closest_parent_with_useful_text(element)
})
return True # Always keep video and audio elements
if element.name != 'pre':
if element.name in ['b', 'i', 'u', 'span', 'del', 'ins', 'sub', 'sup', 'strong', 'em', 'code', 'kbd', 'var', 's', 'q', 'abbr', 'cite', 'dfn', 'time', 'small', 'mark']:
if kwargs.get('only_text', False):
element.replace_with(element.get_text())
else:
element.unwrap()
elif element.name != 'img':
element.attrs = {}
# Process children
for child in list(element.children):
if isinstance(child, NavigableString) and not isinstance(child, Comment):
if len(child.strip()) > 0:
keep_element = True
else:
if process_element(child):
keep_element = True
# Check word count
if not keep_element:
word_count = len(element.get_text(strip=True).split())
keep_element = word_count >= word_count_threshold
if not keep_element:
element.decompose()
return keep_element
except Exception as e:
print('Error processing element:', str(e))
return False
#process images by filtering and extracting contextual text from the page
imgs = body.find_all('img')
media['images'] = [
result for result in
(process_image(img, url, i, len(imgs)) for i, img in enumerate(imgs))
if result is not None
]
process_element(body)
def flatten_nested_elements(node):
if isinstance(node, NavigableString):
return node
if len(node.contents) == 1 and isinstance(node.contents[0], element.Tag) and node.contents[0].name == node.name:
return flatten_nested_elements(node.contents[0])
node.contents = [flatten_nested_elements(child) for child in node.contents]
return node
body = flatten_nested_elements(body)
base64_pattern = re.compile(r'data:image/[^;]+;base64,([^"]+)')
for img in imgs:
try:
src = img.get('src', '')
if base64_pattern.match(src):
img['src'] = base64_pattern.sub('', src)
except:
pass
cleaned_html = str(body).replace('\n\n', '\n').replace(' ', ' ')
cleaned_html = sanitize_html(cleaned_html)
h = CustomHTML2Text()
h.ignore_links = True
markdown = h.handle(cleaned_html)
markdown = markdown.replace(' ```', '```')
try:
meta = extract_metadata(html, soup)
except Exception as e:
print('Error extracting metadata:', str(e))
meta = {}
return {
'markdown': markdown,
'cleaned_html': cleaned_html,
'success': True,
'media': media,
'links': links,
'metadata': meta
}
def extract_metadata(html, soup=None):
"""
Extract optimized content, media, and links from website HTML.
How it works:
1. Similar to `get_content_of_website`, but optimized for performance.
2. Filters and scores images for usefulness.
3. Extracts contextual descriptions for media files.
4. Handles excluded tags and CSS selectors.
5. Cleans HTML and converts it to Markdown.
Args:
url (str): The website URL.
html (str): The HTML content of the website.
word_count_threshold (int): Minimum word count for content inclusion. Defaults to MIN_WORD_THRESHOLD.
css_selector (Optional[str]): CSS selector to extract specific content. Defaults to None.
**kwargs: Additional options for customization.
Returns:
Dict[str, Any]: Extracted content including Markdown, cleaned HTML, media, links, and metadata.
"""
metadata = {}
if not html and not soup:
return {}
if not soup:
soup = BeautifulSoup(html, 'lxml')
head = soup.head
if not head:
return metadata
# Title
title_tag = head.find('title')
metadata['title'] = title_tag.string.strip() if title_tag and title_tag.string else None
# Meta description
description_tag = head.find('meta', attrs={'name': 'description'})
metadata['description'] = description_tag.get('content', '').strip() if description_tag else None
# Meta keywords
keywords_tag = head.find('meta', attrs={'name': 'keywords'})
metadata['keywords'] = keywords_tag.get('content', '').strip() if keywords_tag else None
# Meta author
author_tag = head.find('meta', attrs={'name': 'author'})
metadata['author'] = author_tag.get('content', '').strip() if author_tag else None
# Open Graph metadata
og_tags = head.find_all('meta', attrs={'property': re.compile(r'^og:')})
for tag in og_tags:
property_name = tag.get('property', '').strip()
content = tag.get('content', '').strip()
if property_name and content:
metadata[property_name] = content
# Twitter Card metadata
twitter_tags = head.find_all('meta', attrs={'name': re.compile(r'^twitter:')})
for tag in twitter_tags:
property_name = tag.get('name', '').strip()
content = tag.get('content', '').strip()
if property_name and content:
metadata[property_name] = content
return metadata
def extract_xml_tags(string):
"""
Extracts XML tags from a string.
Args:
string (str): The input string containing XML tags.
Returns:
List[str]: A list of XML tags extracted from the input string.
"""
tags = re.findall(r'<(\w+)>', string)
return list(set(tags))
def extract_xml_data(tags, string):
"""
Extract data for specified XML tags from a string.
How it works:
1. Searches the string for each tag using regex.
2. Extracts the content within the tags.
3. Returns a dictionary of tag-content pairs.
Args:
tags (List[str]): The list of XML tags to extract.
string (str): The input string containing XML data.
Returns:
Dict[str, str]: A dictionary with tag names as keys and extracted content as values.
"""
data = {}
for tag in tags:
pattern = f"<{tag}>(.*?)</{tag}>"
match = re.search(pattern, string, re.DOTALL)
if match:
data[tag] = match.group(1).strip()
else:
data[tag] = ""
return data
def perform_completion_with_backoff(
provider,
prompt_with_variables,
api_token,
json_response = False,
base_url=None,
**kwargs
):
"""
Perform an API completion request with exponential backoff.
How it works:
1. Sends a completion request to the API.
2. Retries on rate-limit errors with exponential delays.
3. Returns the API response or an error after all retries.
Args:
provider (str): The name of the API provider.
prompt_with_variables (str): The input prompt for the completion request.
api_token (str): The API token for authentication.
json_response (bool): Whether to request a JSON response. Defaults to False.
base_url (Optional[str]): The base URL for the API. Defaults to None.
**kwargs: Additional arguments for the API request.
Returns:
dict: The API response or an error message after all retries.
"""
from litellm import completion
from litellm.exceptions import RateLimitError
max_attempts = 3
base_delay = 2 # Base delay in seconds, you can adjust this based on your needs
extra_args = {
"temperature": 0.01,
'api_key': api_token,
'base_url': base_url
}
if json_response:
extra_args["response_format"] = { "type": "json_object" }
if kwargs.get("extra_args"):
extra_args.update(kwargs["extra_args"])
for attempt in range(max_attempts):
try:
response =completion(
model=provider,
messages=[
{"role": "user", "content": prompt_with_variables}
],
**extra_args
)
return response # Return the successful response
except RateLimitError as e:
print("Rate limit error:", str(e))
# Check if we have exhausted our max attempts
if attempt < max_attempts - 1:
# Calculate the delay and wait
delay = base_delay * (2 ** attempt) # Exponential backoff formula
print(f"Waiting for {delay} seconds before retrying...")
time.sleep(delay)
else:
# Return an error response after exhausting all retries
return [{
"index": 0,
"tags": ["error"],
"content": ["Rate limit error. Please try again later."]
}]
def extract_blocks(url, html, provider = DEFAULT_PROVIDER, api_token = None, base_url = None):
"""
Extract content blocks from website HTML using an AI provider.
How it works:
1. Prepares a prompt by sanitizing and escaping HTML.
2. Sends the prompt to an AI provider with optional retries.
3. Parses the response to extract structured blocks or errors.
Args:
url (str): The website URL.
html (str): The HTML content of the website.
provider (str): The AI provider for content extraction. Defaults to DEFAULT_PROVIDER.
api_token (Optional[str]): The API token for authentication. Defaults to None.
base_url (Optional[str]): The base URL for the API. Defaults to None.
Returns:
List[dict]: A list of extracted content blocks.
"""
# api_token = os.getenv('GROQ_API_KEY', None) if not api_token else api_token
api_token = PROVIDER_MODELS.get(provider, None) if not api_token else api_token
variable_values = {
"URL": url,
"HTML": escape_json_string(sanitize_html(html)),
}
prompt_with_variables = PROMPT_EXTRACT_BLOCKS
for variable in variable_values:
prompt_with_variables = prompt_with_variables.replace(
"{" + variable + "}", variable_values[variable]
)
response = perform_completion_with_backoff(provider, prompt_with_variables, api_token, base_url=base_url)
try:
blocks = extract_xml_data(["blocks"], response.choices[0].message.content)['blocks']
blocks = json.loads(blocks)
## Add error: False to the blocks
for block in blocks:
block['error'] = False
except Exception as e:
parsed, unparsed = split_and_parse_json_objects(response.choices[0].message.content)
blocks = parsed
# Append all unparsed segments as onr error block and content is list of unparsed segments
if unparsed:
blocks.append({
"index": 0,
"error": True,
"tags": ["error"],
"content": unparsed
})
return blocks
def extract_blocks_batch(batch_data, provider = "groq/llama3-70b-8192", api_token = None):
"""
Extract content blocks from a batch of website HTMLs.
How it works:
1. Prepares prompts for each URL and HTML pair.
2. Sends the prompts to the AI provider in a batch request.
3. Parses the responses to extract structured blocks or errors.
Args:
batch_data (List[Tuple[str, str]]): A list of (URL, HTML) pairs.
provider (str): The AI provider for content extraction. Defaults to "groq/llama3-70b-8192".
api_token (Optional[str]): The API token for authentication. Defaults to None.
Returns:
List[dict]: A list of extracted content blocks from all batch items.
"""
api_token = os.getenv('GROQ_API_KEY', None) if not api_token else api_token
from litellm import batch_completion
messages = []
for url, html in batch_data:
variable_values = {
"URL": url,
"HTML": html,
}
prompt_with_variables = PROMPT_EXTRACT_BLOCKS
for variable in variable_values:
prompt_with_variables = prompt_with_variables.replace(
"{" + variable + "}", variable_values[variable]
)
messages.append([{"role": "user", "content": prompt_with_variables}])
responses = batch_completion(
model = provider,
messages = messages,
temperature = 0.01
)
all_blocks = []
for response in responses:
try:
blocks = extract_xml_data(["blocks"], response.choices[0].message.content)['blocks']
blocks = json.loads(blocks)
except Exception as e:
blocks = [{
"index": 0,
"tags": ["error"],
"content": ["Error extracting blocks from the HTML content. Choose another provider/model or try again."],
"questions": ["What went wrong during the block extraction process?"]
}]
all_blocks.append(blocks)
return sum(all_blocks, [])
def merge_chunks_based_on_token_threshold(chunks, token_threshold):
"""
Merges small chunks into larger ones based on the total token threshold.
:param chunks: List of text chunks to be merged based on token count.
:param token_threshold: Max number of tokens for each merged chunk.
:return: List of merged text chunks.
"""
merged_sections = []
current_chunk = []
total_token_so_far = 0
for chunk in chunks:
chunk_token_count = len(chunk.split()) * 1.3 # Estimate token count with a factor
if total_token_so_far + chunk_token_count < token_threshold:
current_chunk.append(chunk)
total_token_so_far += chunk_token_count
else:
if current_chunk:
merged_sections.append('\n\n'.join(current_chunk))
current_chunk = [chunk]
total_token_so_far = chunk_token_count
# Add the last chunk if it exists
if current_chunk:
merged_sections.append('\n\n'.join(current_chunk))
return merged_sections
def process_sections(url: str, sections: list, provider: str, api_token: str, base_url=None) -> list:
"""
Process sections of HTML content sequentially or in parallel.
How it works:
1. Sequentially processes sections with delays for "groq/" providers.
2. Uses ThreadPoolExecutor for parallel processing with other providers.
3. Extracts content blocks for each section.
Args:
url (str): The website URL.
sections (List[str]): The list of HTML sections to process.
provider (str): The AI provider for content extraction.
api_token (str): The API token for authentication.
base_url (Optional[str]): The base URL for the API. Defaults to None.
Returns:
List[dict]: The list of extracted content blocks from all sections.
"""
extracted_content = []
if provider.startswith("groq/"):
# Sequential processing with a delay
for section in sections:
extracted_content.extend(extract_blocks(url, section, provider, api_token, base_url=base_url))
time.sleep(0.5) # 500 ms delay between each processing
else:
# Parallel processing using ThreadPoolExecutor
with ThreadPoolExecutor() as executor:
futures = [executor.submit(extract_blocks, url, section, provider, api_token, base_url=base_url) for section in sections]
for future in as_completed(futures):
extracted_content.extend(future.result())
return extracted_content
def wrap_text(draw, text, font, max_width):
"""
Wrap text to fit within a specified width for rendering.
How it works:
1. Splits the text into words.
2. Constructs lines that fit within the maximum width using the provided font.
3. Returns the wrapped text as a single string.
Args:
draw (ImageDraw.Draw): The drawing context for measuring text size.
text (str): The text to wrap.
font (ImageFont.FreeTypeFont): The font to use for measuring text size.
max_width (int): The maximum width for each line.
Returns:
str: The wrapped text.
"""
# Wrap the text to fit within the specified width
lines = []
words = text.split()
while words:
line = ''
while words and draw.textbbox((0, 0), line + words[0], font=font)[2] <= max_width:
line += (words.pop(0) + ' ')
lines.append(line)
return '\n'.join(lines)
def format_html(html_string):
"""
Prettify an HTML string using BeautifulSoup.
How it works:
1. Parses the HTML string with BeautifulSoup.
2. Formats the HTML with proper indentation.
3. Returns the prettified HTML string.
Args:
html_string (str): The HTML string to format.
Returns:
str: The prettified HTML string.
"""
soup = BeautifulSoup(html_string, 'lxml.parser')
return soup.prettify()
def fast_format_html(html_string):
"""
A fast HTML formatter that uses string operations instead of parsing.
Args:
html_string (str): The HTML string to format
Returns:
str: The formatted HTML string
"""
# Initialize variables
indent = 0
indent_str = " " # Two spaces for indentation
formatted = []
in_content = False
# Split by < and > to separate tags and content
parts = html_string.replace('>', '>\n').replace('<', '\n<').split('\n')
for part in parts:
if not part.strip():
continue
# Handle closing tags
if part.startswith('</'):
indent -= 1
formatted.append(indent_str * indent + part)
# Handle self-closing tags
elif part.startswith('<') and part.endswith('/>'):
formatted.append(indent_str * indent + part)
# Handle opening tags
elif part.startswith('<'):
formatted.append(indent_str * indent + part)
indent += 1
# Handle content between tags
else:
content = part.strip()
if content:
formatted.append(indent_str * indent + content)
return '\n'.join(formatted)
def normalize_url(href, base_url):
"""Normalize URLs to ensure consistent format"""
from urllib.parse import urljoin, urlparse
# Parse base URL to get components
parsed_base = urlparse(base_url)
if not parsed_base.scheme or not parsed_base.netloc:
raise ValueError(f"Invalid base URL format: {base_url}")
# Use urljoin to handle all cases
normalized = urljoin(base_url, href.strip())
return normalized
def normalize_url_tmp(href, base_url):
"""Normalize URLs to ensure consistent format"""
# Extract protocol and domain from base URL
try:
base_parts = base_url.split('/')
protocol = base_parts[0]
domain = base_parts[2]
except IndexError:
raise ValueError(f"Invalid base URL format: {base_url}")
# Handle special protocols
special_protocols = {'mailto:', 'tel:', 'ftp:', 'file:', 'data:', 'javascript:'}
if any(href.lower().startswith(proto) for proto in special_protocols):
return href.strip()
# Handle anchor links
if href.startswith('#'):
return f"{base_url}{href}"
# Handle protocol-relative URLs
if href.startswith('//'):
return f"{protocol}{href}"
# Handle root-relative URLs
if href.startswith('/'):
return f"{protocol}//{domain}{href}"
# Handle relative URLs
if not href.startswith(('http://', 'https://')):
# Remove leading './' if present
href = href.lstrip('./')
return f"{protocol}//{domain}/{href}"
return href.strip()
def get_base_domain(url: str) -> str:
"""
Extract the base domain from a given URL, handling common edge cases.
How it works:
1. Parses the URL to extract the domain.
2. Removes the port number and 'www' prefix.
3. Handles special domains (e.g., 'co.uk') to extract the correct base.
Args:
url (str): The URL to extract the base domain from.
Returns:
str: The extracted base domain or an empty string if parsing fails.
"""
try:
# Get domain from URL
domain = urlparse(url).netloc.lower()
if not domain:
return ""
# Remove port if present
domain = domain.split(':')[0]
# Remove www
domain = re.sub(r'^www\.', '', domain)
# Extract last two parts of domain (handles co.uk etc)
parts = domain.split('.')
if len(parts) > 2 and parts[-2] in {
'co', 'com', 'org', 'gov', 'edu', 'net',
'mil', 'int', 'ac', 'ad', 'ae', 'af', 'ag'
}:
return '.'.join(parts[-3:])
return '.'.join(parts[-2:])
except Exception:
return ""
def is_external_url(url: str, base_domain: str) -> bool:
"""
Extract the base domain from a given URL, handling common edge cases.
How it works:
1. Parses the URL to extract the domain.
2. Removes the port number and 'www' prefix.
3. Handles special domains (e.g., 'co.uk') to extract the correct base.
Args:
url (str): The URL to extract the base domain from.
Returns:
str: The extracted base domain or an empty string if parsing fails.
"""
special = {'mailto:', 'tel:', 'ftp:', 'file:', 'data:', 'javascript:'}
if any(url.lower().startswith(p) for p in special):
return True
try:
parsed = urlparse(url)
if not parsed.netloc: # Relative URL
return False
# Strip 'www.' from both domains for comparison
url_domain = parsed.netloc.lower().replace('www.', '')
base = base_domain.lower().replace('www.', '')
# Check if URL domain ends with base domain
return not url_domain.endswith(base)
except Exception:
return False
def clean_tokens(tokens: list[str]) -> list[str]:
"""
Clean a list of tokens by removing noise, stop words, and short tokens.
How it works:
1. Defines a set of noise words and stop words.
2. Filters tokens based on length and exclusion criteria.
3. Excludes tokens starting with certain symbols (e.g., "↑", "▲").
Args:
tokens (list[str]): The list of tokens to clean.
Returns:
list[str]: The cleaned list of tokens.
"""
# Set of tokens to remove
noise = {'ccp', 'up', '↑', '▲', '⬆️', 'a', 'an', 'at', 'by', 'in', 'of', 'on', 'to', 'the'}
STOP_WORDS = {
'a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from',
'has', 'he', 'in', 'is', 'it', 'its', 'of', 'on', 'that', 'the',
'to', 'was', 'were', 'will', 'with',
# Pronouns
'i', 'you', 'he', 'she', 'it', 'we', 'they',
'me', 'him', 'her', 'us', 'them',
'my', 'your', 'his', 'her', 'its', 'our', 'their',
'mine', 'yours', 'hers', 'ours', 'theirs',
'myself', 'yourself', 'himself', 'herself', 'itself', 'ourselves', 'themselves',
# Common verbs
'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being',
'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing',
# Prepositions
'about', 'above', 'across', 'after', 'against', 'along', 'among', 'around',
'at', 'before', 'behind', 'below', 'beneath', 'beside', 'between', 'beyond',
'by', 'down', 'during', 'except', 'for', 'from', 'in', 'inside', 'into',
'near', 'of', 'off', 'on', 'out', 'outside', 'over', 'past', 'through',
'to', 'toward', 'under', 'underneath', 'until', 'up', 'upon', 'with', 'within',
# Conjunctions
'and', 'but', 'or', 'nor', 'for', 'yet', 'so',
'although', 'because', 'since', 'unless',
# Articles
'a', 'an', 'the',
# Other common words
'this', 'that', 'these', 'those',
'what', 'which', 'who', 'whom', 'whose',
'when', 'where', 'why', 'how',
'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such',
'can', 'cannot', "can't", 'could', "couldn't",
'may', 'might', 'must', "mustn't",
'shall', 'should', "shouldn't",
'will', "won't", 'would', "wouldn't",
'not', "n't", 'no', 'nor', 'none'
}
# Single comprehension, more efficient than multiple passes
return [token for token in tokens
if len(token) > 2
and token not in noise
and token not in STOP_WORDS
and not token.startswith('↑')
and not token.startswith('▲')
and not token.startswith('⬆')]
def profile_and_time(func):
"""
Decorator to profile a function's execution time and performance.
How it works:
1. Records the start time before executing the function.
2. Profiles the function's execution using `cProfile`.
3. Prints the elapsed time and profiling statistics.
Args:
func (Callable): The function to decorate.
Returns:
Callable: The decorated function with profiling and timing enabled.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
# Start timer
start_time = time.perf_counter()
# Setup profiler
profiler = cProfile.Profile()
profiler.enable()
# Run function
result = func(self, *args, **kwargs)
# Stop profiler
profiler.disable()
# Calculate elapsed time
elapsed_time = time.perf_counter() - start_time
# Print timing
print(f"[PROFILER] Scraping completed in {elapsed_time:.2f} seconds")
# Print profiling stats
stats = pstats.Stats(profiler)
stats.sort_stats('cumulative') # Sort by cumulative time
stats.print_stats(20) # Print top 20 time-consuming functions
return result
return wrapper
def generate_content_hash(content: str) -> str:
"""Generate a unique hash for content"""
return xxhash.xxh64(content.encode()).hexdigest()
# return hashlib.sha256(content.encode()).hexdigest()
def ensure_content_dirs(base_path: str) -> Dict[str, str]:
"""Create content directories if they don't exist"""
dirs = {
'html': 'html_content',
'cleaned': 'cleaned_html',
'markdown': 'markdown_content',
'extracted': 'extracted_content',
'screenshots': 'screenshots',
'screenshot': 'screenshots'
}
content_paths = {}
for key, dirname in dirs.items():
path = os.path.join(base_path, dirname)
os.makedirs(path, exist_ok=True)
content_paths[key] = path
return content_paths
def configure_windows_event_loop():
"""
Configure the Windows event loop to use ProactorEventLoop.
This resolves the NotImplementedError that occurs on Windows when using asyncio subprocesses.
This function should only be called on Windows systems and before any async operations.
On non-Windows systems, this function does nothing.
Example:
```python
from crawl4ai.async_configs import configure_windows_event_loop
# Call this before any async operations if you're on Windows
configure_windows_event_loop()
```
"""
if platform.system() == 'Windows':
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
def get_error_context(exc_info, context_lines: int = 5):
"""
Extract error context with more reliable line number tracking.
Args:
exc_info: The exception info from sys.exc_info()
context_lines: Number of lines to show before and after the error
Returns:
dict: Error context information
"""
import traceback
import linecache
import os
# Get the full traceback
tb = traceback.extract_tb(exc_info[2])
# Get the last frame (where the error occurred)
last_frame = tb[-1]
filename = last_frame.filename
line_no = last_frame.lineno
func_name = last_frame.name
# Get the source code context using linecache
# This is more reliable than inspect.getsourcelines
context_start = max(1, line_no - context_lines)
context_end = line_no + context_lines + 1
# Build the context lines with line numbers
context_lines = []
for i in range(context_start, context_end):
line = linecache.getline(filename, i)
if line:
# Remove any trailing whitespace/newlines and add the pointer for error line
line = line.rstrip()
pointer = '→' if i == line_no else ' '
context_lines.append(f"{i:4d} {pointer} {line}")
# Join the lines with newlines
code_context = '\n'.join(context_lines)
# Get relative path for cleaner output
try:
rel_path = os.path.relpath(filename)
except ValueError:
# Fallback if relpath fails (can happen on Windows with different drives)
rel_path = filename
return {
"filename": rel_path,
"line_no": line_no,
"function": func_name,
"code_context": code_context
}
|