File size: 10,545 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os, time
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from pathlib import Path

from .models import UrlModel, CrawlResult
from .database import init_db, get_cached_url, cache_url, DB_PATH, flush_db
from .utils import *
from .chunking_strategy import *
from .extraction_strategy import *
from .crawler_strategy import *
from typing import List
from concurrent.futures import ThreadPoolExecutor
from .content_scraping_strategy import WebScrapingStrategy
from .config import *
import warnings
import json
warnings.filterwarnings("ignore", message='Field "model_name" has conflict with protected namespace "model_".')


class WebCrawler:
    def __init__(self, crawler_strategy: CrawlerStrategy = None, always_by_pass_cache: bool = False, verbose: bool = False):
        self.crawler_strategy = crawler_strategy or LocalSeleniumCrawlerStrategy(verbose=verbose)
        self.always_by_pass_cache = always_by_pass_cache
        self.crawl4ai_folder = os.path.join(os.getenv("CRAWL4_AI_BASE_DIRECTORY", Path.home()), ".crawl4ai")
        os.makedirs(self.crawl4ai_folder, exist_ok=True)
        os.makedirs(f"{self.crawl4ai_folder}/cache", exist_ok=True)
        init_db()
        self.ready = False
        
    def warmup(self):
        print("[LOG] 🌀️  Warming up the WebCrawler")
        self.run(
            url='https://google.com/',
            word_count_threshold=5,
            extraction_strategy=NoExtractionStrategy(),
            bypass_cache=False,
            verbose=False
        )
        self.ready = True
        print("[LOG] 🌞 WebCrawler is ready to crawl")
        
    def fetch_page(
        self,
        url_model: UrlModel,
        provider: str = DEFAULT_PROVIDER,
        api_token: str = None,
        extract_blocks_flag: bool = True,
        word_count_threshold=MIN_WORD_THRESHOLD,
        css_selector: str = None,
        screenshot: bool = False,
        use_cached_html: bool = False,
        extraction_strategy: ExtractionStrategy = None,
        chunking_strategy: ChunkingStrategy = RegexChunking(),
        **kwargs,
    ) -> CrawlResult:
        return self.run(
            url_model.url,
            word_count_threshold,
            extraction_strategy or NoExtractionStrategy(),
            chunking_strategy,
            bypass_cache=url_model.forced,
            css_selector=css_selector,
            screenshot=screenshot,
            **kwargs,
        )
        pass

    def fetch_pages(
        self,
        url_models: List[UrlModel],
        provider: str = DEFAULT_PROVIDER,
        api_token: str = None,
        extract_blocks_flag: bool = True,
        word_count_threshold=MIN_WORD_THRESHOLD,
        use_cached_html: bool = False,
        css_selector: str = None,
        screenshot: bool = False,
        extraction_strategy: ExtractionStrategy = None,
        chunking_strategy: ChunkingStrategy = RegexChunking(),
        **kwargs,
    ) -> List[CrawlResult]:
        extraction_strategy = extraction_strategy or NoExtractionStrategy()
        def fetch_page_wrapper(url_model, *args, **kwargs):
            return self.fetch_page(url_model, *args, **kwargs)

        with ThreadPoolExecutor() as executor:
            results = list(
                executor.map(
                    fetch_page_wrapper,
                    url_models,
                    [provider] * len(url_models),
                    [api_token] * len(url_models),
                    [extract_blocks_flag] * len(url_models),
                    [word_count_threshold] * len(url_models),
                    [css_selector] * len(url_models),
                    [screenshot] * len(url_models),
                    [use_cached_html] * len(url_models),
                    [extraction_strategy] * len(url_models),
                    [chunking_strategy] * len(url_models),
                    *[kwargs] * len(url_models),
                )
            )

        return results

    def run(
            self,
            url: str,
            word_count_threshold=MIN_WORD_THRESHOLD,
            extraction_strategy: ExtractionStrategy = None,
            chunking_strategy: ChunkingStrategy = RegexChunking(),
            bypass_cache: bool = False,
            css_selector: str = None,
            screenshot: bool = False,
            user_agent: str = None,
            verbose=True,
            **kwargs,
        ) -> CrawlResult:
            try:
                extraction_strategy = extraction_strategy or NoExtractionStrategy()
                extraction_strategy.verbose = verbose
                if not isinstance(extraction_strategy, ExtractionStrategy):
                    raise ValueError("Unsupported extraction strategy")
                if not isinstance(chunking_strategy, ChunkingStrategy):
                    raise ValueError("Unsupported chunking strategy")
                
                word_count_threshold = max(word_count_threshold, MIN_WORD_THRESHOLD)

                cached = None
                screenshot_data = None
                extracted_content = None
                if not bypass_cache and not self.always_by_pass_cache:
                    cached = get_cached_url(url)
                
                if kwargs.get("warmup", True) and not self.ready:
                    return None
                
                if cached:
                    html = sanitize_input_encode(cached[1])
                    extracted_content = sanitize_input_encode(cached[4])
                    if screenshot:
                        screenshot_data = cached[9]
                        if not screenshot_data:
                            cached = None
                
                if not cached or not html:
                    if user_agent:
                        self.crawler_strategy.update_user_agent(user_agent)
                    t1 = time.time()
                    html = sanitize_input_encode(self.crawler_strategy.crawl(url, **kwargs))
                    t2 = time.time()
                    if verbose:
                        print(f"[LOG] πŸš€ Crawling done for {url}, success: {bool(html)}, time taken: {t2 - t1:.2f} seconds")
                    if screenshot:
                        screenshot_data = self.crawler_strategy.take_screenshot()

                
                crawl_result = self.process_html(url, html, extracted_content, word_count_threshold, extraction_strategy, chunking_strategy, css_selector, screenshot_data, verbose, bool(cached), **kwargs)
                crawl_result.success = bool(html)
                return crawl_result
            except Exception as e:
                if not hasattr(e, "msg"):
                    e.msg = str(e)
                print(f"[ERROR] 🚫 Failed to crawl {url}, error: {e.msg}")    
                return CrawlResult(url=url, html="", success=False, error_message=e.msg)

    def process_html(
            self,
            url: str,
            html: str,
            extracted_content: str,
            word_count_threshold: int,
            extraction_strategy: ExtractionStrategy,
            chunking_strategy: ChunkingStrategy,
            css_selector: str,
            screenshot: bool,
            verbose: bool,
            is_cached: bool,
            **kwargs,
        ) -> CrawlResult:
            t = time.time()
            # Extract content from HTML
            try:
                t1 = time.time()
                scrapping_strategy = WebScrapingStrategy()
                extra_params = {k: v for k, v in kwargs.items() if k not in ["only_text", "image_description_min_word_threshold"]}
                result = scrapping_strategy.scrap(
                    url,
                    html,
                    word_count_threshold=word_count_threshold,
                    css_selector=css_selector,
                    only_text=kwargs.get("only_text", False),
                    image_description_min_word_threshold=kwargs.get(
                        "image_description_min_word_threshold", IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD
                    ),
                    **extra_params,
                )
                
                # result = get_content_of_website_optimized(url, html, word_count_threshold, css_selector=css_selector, only_text=kwargs.get("only_text", False))
                if verbose:
                    print(f"[LOG] πŸš€ Content extracted for {url}, success: True, time taken: {time.time() - t1:.2f} seconds")
                
                if result is None:
                    raise ValueError(f"Failed to extract content from the website: {url}")
            except InvalidCSSSelectorError as e:
                raise ValueError(str(e))
            
            cleaned_html = sanitize_input_encode(result.get("cleaned_html", ""))
            markdown = sanitize_input_encode(result.get("markdown", ""))
            media = result.get("media", [])
            links = result.get("links", [])
            metadata = result.get("metadata", {})
                        
            if extracted_content is None:
                if verbose:
                    print(f"[LOG] πŸ”₯ Extracting semantic blocks for {url}, Strategy: {extraction_strategy.name}")

                sections = chunking_strategy.chunk(markdown)
                extracted_content = extraction_strategy.run(url, sections)
                extracted_content = json.dumps(extracted_content, indent=4, default=str, ensure_ascii=False)

                if verbose:
                    print(f"[LOG] πŸš€ Extraction done for {url}, time taken: {time.time() - t:.2f} seconds.")
                
            screenshot = None if not screenshot else screenshot
            
            if not is_cached:
                cache_url(
                    url,
                    html,
                    cleaned_html,
                    markdown,
                    extracted_content,
                    True,
                    json.dumps(media),
                    json.dumps(links),
                    json.dumps(metadata),
                    screenshot=screenshot,
                )                
            
            return CrawlResult(
                url=url,
                html=html,
                cleaned_html=format_html(cleaned_html),
                markdown=markdown,
                media=media,
                links=links,
                metadata=metadata,
                screenshot=screenshot,
                extracted_content=extracted_content,
                success=True,
                error_message="",
            )