Spaces:
Runtime error
Runtime error
File size: 1,744 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import requests, base64, os
data = {
"urls": ["https://www.nbcnews.com/business"],
"screenshot": True,
}
response = requests.post("https://crawl4ai.com/crawl", json=data)
result = response.json()['results'][0]
print(result.keys())
# dict_keys(['url', 'html', 'success', 'cleaned_html', 'media',
# 'links', 'screenshot', 'markdown', 'extracted_content',
# 'metadata', 'error_message'])
with open("screenshot.png", "wb") as f:
f.write(base64.b64decode(result['screenshot']))
# Example of filtering the content using CSS selectors
data = {
"urls": [
"https://www.nbcnews.com/business"
],
"css_selector": "article",
"screenshot": True,
}
# Example of executing a JS script on the page before extracting the content
data = {
"urls": [
"https://www.nbcnews.com/business"
],
"screenshot": True,
'js' : ["""
const loadMoreButton = Array.from(document.querySelectorAll('button')).
find(button => button.textContent.includes('Load More'));
loadMoreButton && loadMoreButton.click();
"""]
}
# Example of using a custom extraction strategy
data = {
"urls": [
"https://www.nbcnews.com/business"
],
"extraction_strategy": "CosineStrategy",
"extraction_strategy_args": {
"semantic_filter": "inflation rent prices"
},
}
# Example of using LLM to extract content
data = {
"urls": [
"https://www.nbcnews.com/business"
],
"extraction_strategy": "LLMExtractionStrategy",
"extraction_strategy_args": {
"provider": "groq/llama3-8b-8192",
"api_token": os.environ.get("GROQ_API_KEY"),
"instruction": """I am interested in only financial news,
and translate them in French."""
},
}
|