File size: 8,401 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# CrawlResult

The `CrawlResult` class represents the result of a web crawling operation. It provides access to various forms of extracted content and metadata from the crawled webpage.

## Class Definition

```python
class CrawlResult(BaseModel):
    """Result of a web crawling operation."""
    
    # Basic Information
    url: str                                # Crawled URL
    success: bool                           # Whether crawl succeeded
    status_code: Optional[int] = None       # HTTP status code
    error_message: Optional[str] = None     # Error message if failed
    
    # Content
    html: str                              # Raw HTML content
    cleaned_html: Optional[str] = None      # Cleaned HTML
    fit_html: Optional[str] = None          # Most relevant HTML content
    markdown: Optional[str] = None          # HTML converted to markdown
    fit_markdown: Optional[str] = None      # Most relevant markdown content
    downloaded_files: Optional[List[str]] = None  # Downloaded files
    
    # Extracted Data
    extracted_content: Optional[str] = None  # Content from extraction strategy
    media: Dict[str, List[Dict]] = {}       # Extracted media information
    links: Dict[str, List[Dict]] = {}       # Extracted links
    metadata: Optional[dict] = None         # Page metadata
    
    # Additional Data
    screenshot: Optional[str] = None         # Base64 encoded screenshot
    session_id: Optional[str] = None         # Session identifier
    response_headers: Optional[dict] = None  # HTTP response headers
```

## Properties and Their Data Structures

### Basic Information

```python
# Access basic information
result = await crawler.arun(url="https://example.com")

print(result.url)          # "https://example.com"
print(result.success)      # True/False
print(result.status_code)  # 200, 404, etc.
print(result.error_message)  # Error details if failed
```

### Content Properties

#### HTML Content
```python
# Raw HTML
html_content = result.html

# Cleaned HTML (removed ads, popups, etc.)
clean_content = result.cleaned_html

# Most relevant HTML content
main_content = result.fit_html
```

#### Markdown Content
```python
# Full markdown version
markdown_content = result.markdown

# Most relevant markdown content
main_content = result.fit_markdown
```

### Media Content

The media dictionary contains organized media elements:

```python
# Structure
media = {
    "images": [
        {
            "src": str,           # Image URL
            "alt": str,           # Alt text
            "desc": str,          # Contextual description
            "score": float,       # Relevance score (0-10)
            "type": str,          # "image"
            "width": int,         # Image width (if available)
            "height": int,        # Image height (if available)
            "context": str,       # Surrounding text
            "lazy": bool          # Whether image was lazy-loaded
        }
    ],
    "videos": [
        {
            "src": str,           # Video URL
            "type": str,          # "video"
            "title": str,         # Video title
            "poster": str,        # Thumbnail URL
            "duration": str,      # Video duration
            "description": str    # Video description
        }
    ],
    "audios": [
        {
            "src": str,           # Audio URL
            "type": str,          # "audio"
            "title": str,         # Audio title
            "duration": str,      # Audio duration
            "description": str    # Audio description
        }
    ]
}

# Example usage
for image in result.media["images"]:
    if image["score"] > 5:  # High-relevance images
        print(f"High-quality image: {image['src']}")
        print(f"Context: {image['context']}")
```

### Link Analysis

The links dictionary organizes discovered links:

```python
# Structure
links = {
    "internal": [
        {
            "href": str,          # URL
            "text": str,          # Link text
            "title": str,         # Title attribute
            "type": str,          # Link type (nav, content, etc.)
            "context": str,       # Surrounding text
            "score": float        # Relevance score
        }
    ],
    "external": [
        {
            "href": str,          # External URL
            "text": str,          # Link text
            "title": str,         # Title attribute
            "domain": str,        # Domain name
            "type": str,          # Link type
            "context": str        # Surrounding text
        }
    ]
}

# Example usage
for link in result.links["internal"]:
    print(f"Internal link: {link['href']}")
    print(f"Context: {link['context']}")
```

### Metadata

The metadata dictionary contains page information:

```python
# Structure
metadata = {
    "title": str,                # Page title
    "description": str,          # Meta description
    "keywords": List[str],       # Meta keywords
    "author": str,              # Author information
    "published_date": str,      # Publication date
    "modified_date": str,       # Last modified date
    "language": str,            # Page language
    "canonical_url": str,       # Canonical URL
    "og_data": Dict,           # Open Graph data
    "twitter_data": Dict       # Twitter card data
}

# Example usage
if result.metadata:
    print(f"Title: {result.metadata['title']}")
    print(f"Author: {result.metadata.get('author', 'Unknown')}")
```

### Extracted Content

Content from extraction strategies:

```python
# For LLM or CSS extraction strategies
if result.extracted_content:
    structured_data = json.loads(result.extracted_content)
    print(structured_data)
```

### Screenshot

Base64 encoded screenshot:

```python
# Save screenshot if available
if result.screenshot:
    import base64
    
    # Decode and save
    with open("screenshot.png", "wb") as f:
        f.write(base64.b64decode(result.screenshot))
```

## Usage Examples

### Basic Content Access
```python
async with AsyncWebCrawler() as crawler:
    result = await crawler.arun(url="https://example.com")
    
    if result.success:
        # Get clean content
        print(result.fit_markdown)
        
        # Process images
        for image in result.media["images"]:
            if image["score"] > 7:
                print(f"High-quality image: {image['src']}")
```

### Complete Data Processing
```python
async def process_webpage(url: str) -> Dict:
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(url=url)
        
        if not result.success:
            raise Exception(f"Crawl failed: {result.error_message}")
        
        return {
            "content": result.fit_markdown,
            "images": [
                img for img in result.media["images"]
                if img["score"] > 5
            ],
            "internal_links": [
                link["href"] for link in result.links["internal"]
            ],
            "metadata": result.metadata,
            "status": result.status_code
        }
```

### Error Handling
```python
async def safe_crawl(url: str) -> Dict:
    async with AsyncWebCrawler() as crawler:
        try:
            result = await crawler.arun(url=url)
            
            if not result.success:
                return {
                    "success": False,
                    "error": result.error_message,
                    "status": result.status_code
                }
            
            return {
                "success": True,
                "content": result.fit_markdown,
                "status": result.status_code
            }
            
        except Exception as e:
            return {
                "success": False,
                "error": str(e),
                "status": None
            }
```

## Best Practices

1. **Always Check Success**
```python
if not result.success:
    print(f"Error: {result.error_message}")
    return
```

2. **Use fit_markdown for Articles**
```python
# Better for article content
content = result.fit_markdown if result.fit_markdown else result.markdown
```

3. **Filter Media by Score**
```python
relevant_images = [
    img for img in result.media["images"]
    if img["score"] > 5
]
```

4. **Handle Missing Data**
```python
metadata = result.metadata or {}
title = metadata.get('title', 'Unknown Title')
```