File size: 6,433 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Cosine Strategy

The Cosine Strategy in Crawl4AI uses similarity-based clustering to identify and extract relevant content sections from web pages. This strategy is particularly useful when you need to find and extract content based on semantic similarity rather than structural patterns.

## How It Works

The Cosine Strategy:
1. Breaks down page content into meaningful chunks
2. Converts text into vector representations
3. Calculates similarity between chunks
4. Clusters similar content together
5. Ranks and filters content based on relevance

## Basic Usage

```python
from crawl4ai.extraction_strategy import CosineStrategy

strategy = CosineStrategy(
    semantic_filter="product reviews",    # Target content type
    word_count_threshold=10,             # Minimum words per cluster
    sim_threshold=0.3                    # Similarity threshold
)

async with AsyncWebCrawler() as crawler:
    result = await crawler.arun(
        url="https://example.com/reviews",
        extraction_strategy=strategy
    )
    
    content = result.extracted_content
```

## Configuration Options

### Core Parameters

```python
CosineStrategy(
    # Content Filtering
    semantic_filter: str = None,       # Keywords/topic for content filtering
    word_count_threshold: int = 10,    # Minimum words per cluster
    sim_threshold: float = 0.3,        # Similarity threshold (0.0 to 1.0)
    
    # Clustering Parameters
    max_dist: float = 0.2,            # Maximum distance for clustering
    linkage_method: str = 'ward',      # Clustering linkage method
    top_k: int = 3,                   # Number of top categories to extract
    
    # Model Configuration
    model_name: str = 'sentence-transformers/all-MiniLM-L6-v2',  # Embedding model
    
    verbose: bool = False             # Enable logging
)
```

### Parameter Details

1. **semantic_filter**
   - Sets the target topic or content type
   - Use keywords relevant to your desired content
   - Example: "technical specifications", "user reviews", "pricing information"

2. **sim_threshold**
   - Controls how similar content must be to be grouped together
   - Higher values (e.g., 0.8) mean stricter matching
   - Lower values (e.g., 0.3) allow more variation
   ```python
   # Strict matching
   strategy = CosineStrategy(sim_threshold=0.8)
   
   # Loose matching
   strategy = CosineStrategy(sim_threshold=0.3)
   ```

3. **word_count_threshold**
   - Filters out short content blocks
   - Helps eliminate noise and irrelevant content
   ```python
   # Only consider substantial paragraphs
   strategy = CosineStrategy(word_count_threshold=50)
   ```

4. **top_k**
   - Number of top content clusters to return
   - Higher values return more diverse content
   ```python
   # Get top 5 most relevant content clusters
   strategy = CosineStrategy(top_k=5)
   ```

## Use Cases

### 1. Article Content Extraction
```python
strategy = CosineStrategy(
    semantic_filter="main article content",
    word_count_threshold=100,  # Longer blocks for articles
    top_k=1                   # Usually want single main content
)

result = await crawler.arun(
    url="https://example.com/blog/post",
    extraction_strategy=strategy
)
```

### 2. Product Review Analysis
```python
strategy = CosineStrategy(
    semantic_filter="customer reviews and ratings",
    word_count_threshold=20,   # Reviews can be shorter
    top_k=10,                 # Get multiple reviews
    sim_threshold=0.4         # Allow variety in review content
)
```

### 3. Technical Documentation
```python
strategy = CosineStrategy(
    semantic_filter="technical specifications documentation",
    word_count_threshold=30,
    sim_threshold=0.6,        # Stricter matching for technical content
    max_dist=0.3             # Allow related technical sections
)
```

## Advanced Features

### Custom Clustering
```python
strategy = CosineStrategy(
    linkage_method='complete',  # Alternative clustering method
    max_dist=0.4,              # Larger clusters
    model_name='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'  # Multilingual support
)
```

### Content Filtering Pipeline
```python
strategy = CosineStrategy(
    semantic_filter="pricing plans features",
    word_count_threshold=15,
    sim_threshold=0.5,
    top_k=3
)

async def extract_pricing_features(url: str):
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url=url,
            extraction_strategy=strategy
        )
        
        if result.success:
            content = json.loads(result.extracted_content)
            return {
                'pricing_features': content,
                'clusters': len(content),
                'similarity_scores': [item['score'] for item in content]
            }
```

## Best Practices

1. **Adjust Thresholds Iteratively**
   - Start with default values
   - Adjust based on results
   - Monitor clustering quality

2. **Choose Appropriate Word Count Thresholds**
   - Higher for articles (100+)
   - Lower for reviews/comments (20+)
   - Medium for product descriptions (50+)

3. **Optimize Performance**
   ```python
   strategy = CosineStrategy(
       word_count_threshold=10,  # Filter early
       top_k=5,                 # Limit results
       verbose=True             # Monitor performance
   )
   ```

4. **Handle Different Content Types**
   ```python
   # For mixed content pages
   strategy = CosineStrategy(
       semantic_filter="product features",
       sim_threshold=0.4,      # More flexible matching
       max_dist=0.3,          # Larger clusters
       top_k=3                # Multiple relevant sections
   )
   ```

## Error Handling

```python
try:
    result = await crawler.arun(
        url="https://example.com",
        extraction_strategy=strategy
    )
    
    if result.success:
        content = json.loads(result.extracted_content)
        if not content:
            print("No relevant content found")
    else:
        print(f"Extraction failed: {result.error_message}")
        
except Exception as e:
    print(f"Error during extraction: {str(e)}")
```

The Cosine Strategy is particularly effective when:
- Content structure is inconsistent
- You need semantic understanding
- You want to find similar content blocks
- Structure-based extraction (CSS/XPath) isn't reliable

It works well with other strategies and can be used as a pre-processing step for LLM-based extraction.