Spaces:
Build error
Build error
Mars
commited on
Commit
·
e99b724
1
Parent(s):
078b49f
Add application file
Browse files- .gitattributes copy +35 -0
- Dockerfile +62 -0
- Legend.png +0 -0
- README copy.md +13 -0
- app.py +303 -0
- multi_temporal_crop_classification_Prithvi_100M.py +234 -0
- requirements.txt +3 -0
.gitattributes copy
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8
|
2 |
+
|
3 |
+
|
4 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
5 |
+
build-essential \
|
6 |
+
# python3.8 \
|
7 |
+
# python3-pip \
|
8 |
+
# python3-setuptools \
|
9 |
+
git \
|
10 |
+
wget \
|
11 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
12 |
+
|
13 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
14 |
+
|
15 |
+
WORKDIR /code
|
16 |
+
|
17 |
+
RUN useradd -m -u 1000 user
|
18 |
+
|
19 |
+
# Switch to the "user" user
|
20 |
+
USER user
|
21 |
+
# Set home to the user's home directory
|
22 |
+
ENV HOME=/home/user \
|
23 |
+
PATH=/home/user/.local/bin:$PATH \
|
24 |
+
PYTHONPATH=$HOME/app \
|
25 |
+
PYTHONUNBUFFERED=1 \
|
26 |
+
GRADIO_ALLOW_FLAGGING=never \
|
27 |
+
GRADIO_NUM_PORTS=1 \
|
28 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
29 |
+
GRADIO_THEME=huggingface \
|
30 |
+
SYSTEM=spaces
|
31 |
+
|
32 |
+
# RUN conda install python=3.8
|
33 |
+
|
34 |
+
RUN pip install setuptools-rust
|
35 |
+
RUN pip install torch==1.11.0+cu115 torchvision==0.12.0+cu115 --extra-index-url https://download.pytorch.org/whl/cu115
|
36 |
+
RUN pip install gradio scikit-image pillow openmim
|
37 |
+
RUN pip install --upgrade setuptools
|
38 |
+
|
39 |
+
WORKDIR /home/user
|
40 |
+
|
41 |
+
RUN --mount=type=secret,id=git_token,mode=0444,required=true \
|
42 |
+
git clone --branch mmseg-only https://$(cat /run/secrets/git_token)@github.com/NASA-IMPACT/hls-foundation-os.git
|
43 |
+
|
44 |
+
|
45 |
+
WORKDIR hls-foundation-os
|
46 |
+
|
47 |
+
RUN git checkout 9968269915db8402bf4a6d0549df9df57d489e5a
|
48 |
+
|
49 |
+
RUN pip install -e .
|
50 |
+
|
51 |
+
RUN mim install mmcv-full==1.6.2 -f https://download.openmmlab.com/mmcv/dist/11.5/1.11.0/index.html
|
52 |
+
|
53 |
+
# Set the working directory to the user's home directory
|
54 |
+
WORKDIR $HOME/app
|
55 |
+
|
56 |
+
# ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/code/miniconda/lib"
|
57 |
+
|
58 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
59 |
+
|
60 |
+
COPY --chown=user . $HOME/app
|
61 |
+
|
62 |
+
CMD ["python3", "app.py"]
|
Legend.png
ADDED
![]() |
README copy.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Prithvi 100M Multi Temporal Crop Classification Demo
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: apache-2.0
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
|
13 |
+
|
app.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
######### pull files
|
2 |
+
import os
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
#config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
5 |
+
# filename="multi_temporal_crop_classification_Prithvi_100M.py",
|
6 |
+
# token=os.environ.get("token"))
|
7 |
+
|
8 |
+
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
9 |
+
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
|
10 |
+
token=os.environ.get("token"))
|
11 |
+
|
12 |
+
config_path="multi_temporal_crop_classification_Prithvi_100M.py"
|
13 |
+
##########
|
14 |
+
import argparse
|
15 |
+
from mmcv import Config
|
16 |
+
|
17 |
+
from mmseg.models import build_segmentor
|
18 |
+
|
19 |
+
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
|
20 |
+
|
21 |
+
import rasterio
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from mmseg.apis import init_segmentor
|
25 |
+
|
26 |
+
from mmcv.parallel import collate, scatter
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import glob
|
30 |
+
import os
|
31 |
+
|
32 |
+
import time
|
33 |
+
|
34 |
+
import numpy as np
|
35 |
+
import gradio as gr
|
36 |
+
from functools import partial
|
37 |
+
|
38 |
+
import pdb
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
|
41 |
+
from skimage import exposure
|
42 |
+
|
43 |
+
import pandas as pd
|
44 |
+
from vega_datasets import data
|
45 |
+
|
46 |
+
|
47 |
+
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
48 |
+
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
49 |
+
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
50 |
+
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
51 |
+
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
52 |
+
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
53 |
+
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
54 |
+
{'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
|
55 |
+
{'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
|
56 |
+
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
57 |
+
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
58 |
+
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
|
59 |
+
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
60 |
+
|
61 |
+
|
62 |
+
def apply_color_map(rgb, color_map=cdl_color_map):
|
63 |
+
|
64 |
+
|
65 |
+
rgb_mapped = rgb.copy()
|
66 |
+
|
67 |
+
for map_tmp in cdl_color_map:
|
68 |
+
|
69 |
+
for i in range(3):
|
70 |
+
rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
|
71 |
+
|
72 |
+
return rgb_mapped
|
73 |
+
|
74 |
+
|
75 |
+
def stretch_rgb(rgb):
|
76 |
+
|
77 |
+
ls_pct=0
|
78 |
+
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
|
79 |
+
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
|
80 |
+
|
81 |
+
return img_rescale
|
82 |
+
|
83 |
+
def open_tiff(fname):
|
84 |
+
|
85 |
+
with rasterio.open(fname, "r") as src:
|
86 |
+
|
87 |
+
data = src.read()
|
88 |
+
|
89 |
+
return data
|
90 |
+
|
91 |
+
def write_tiff(img_wrt, filename, metadata):
|
92 |
+
|
93 |
+
"""
|
94 |
+
It writes a raster image to file.
|
95 |
+
|
96 |
+
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
|
97 |
+
:param filename: file path to the output file
|
98 |
+
:param metadata: metadata to use to write the raster to disk
|
99 |
+
:return:
|
100 |
+
"""
|
101 |
+
|
102 |
+
with rasterio.open(filename, "w", **metadata) as dest:
|
103 |
+
|
104 |
+
if len(img_wrt.shape) == 2:
|
105 |
+
|
106 |
+
img_wrt = img_wrt[None]
|
107 |
+
|
108 |
+
for i in range(img_wrt.shape[0]):
|
109 |
+
dest.write(img_wrt[i, :, :], i + 1)
|
110 |
+
|
111 |
+
return filename
|
112 |
+
|
113 |
+
|
114 |
+
def get_meta(fname):
|
115 |
+
|
116 |
+
with rasterio.open(fname, "r") as src:
|
117 |
+
|
118 |
+
meta = src.meta
|
119 |
+
|
120 |
+
return meta
|
121 |
+
|
122 |
+
def preprocess_example(example_list):
|
123 |
+
|
124 |
+
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
|
125 |
+
|
126 |
+
return example_list
|
127 |
+
|
128 |
+
|
129 |
+
def inference_segmentor(model, imgs, custom_test_pipeline=None):
|
130 |
+
"""Inference image(s) with the segmentor.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
model (nn.Module): The loaded segmentor.
|
134 |
+
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
|
135 |
+
images.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
(list[Tensor]): The segmentation result.
|
139 |
+
"""
|
140 |
+
cfg = model.cfg
|
141 |
+
device = next(model.parameters()).device # model device
|
142 |
+
# build the data pipeline
|
143 |
+
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
|
144 |
+
test_pipeline = Compose(test_pipeline)
|
145 |
+
# prepare data
|
146 |
+
data = []
|
147 |
+
imgs = imgs if isinstance(imgs, list) else [imgs]
|
148 |
+
for img in imgs:
|
149 |
+
img_data = {'img_info': {'filename': img}}
|
150 |
+
img_data = test_pipeline(img_data)
|
151 |
+
data.append(img_data)
|
152 |
+
# print(data.shape)
|
153 |
+
|
154 |
+
data = collate(data, samples_per_gpu=len(imgs))
|
155 |
+
if next(model.parameters()).is_cuda:
|
156 |
+
# data = collate(data, samples_per_gpu=len(imgs))
|
157 |
+
# scatter to specified GPU
|
158 |
+
data = scatter(data, [device])[0]
|
159 |
+
else:
|
160 |
+
# img_metas = scatter(data['img_metas'],'cpu')
|
161 |
+
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
|
162 |
+
|
163 |
+
img_metas = data['img_metas'].data[0]
|
164 |
+
img = data['img']
|
165 |
+
data = {'img': img, 'img_metas':img_metas}
|
166 |
+
|
167 |
+
with torch.no_grad():
|
168 |
+
result = model(return_loss=False, rescale=True, **data)
|
169 |
+
return result
|
170 |
+
|
171 |
+
|
172 |
+
def process_rgb(input, mask, indexes):
|
173 |
+
|
174 |
+
|
175 |
+
rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
|
176 |
+
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
|
177 |
+
rgb = np.where(rgb < 0, 0, rgb)
|
178 |
+
rgb = np.where(rgb > 255, 255, rgb)
|
179 |
+
|
180 |
+
return rgb
|
181 |
+
|
182 |
+
def inference_on_file(target_image, model, custom_test_pipeline):
|
183 |
+
|
184 |
+
target_image = target_image.name
|
185 |
+
time_taken=-1
|
186 |
+
st = time.time()
|
187 |
+
print('Running inference...')
|
188 |
+
try:
|
189 |
+
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
190 |
+
except:
|
191 |
+
print('Error: Try different channels order.')
|
192 |
+
model.cfg.data.test.pipeline[0]['channels_last'] = True
|
193 |
+
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
194 |
+
print("Output has shape: " + str(result[0].shape))
|
195 |
+
|
196 |
+
##### get metadata mask
|
197 |
+
input = open_tiff(target_image)
|
198 |
+
meta = get_meta(target_image)
|
199 |
+
mask = np.where(input == meta['nodata'], 1, 0)
|
200 |
+
mask = np.max(mask, axis=0)[None]
|
201 |
+
|
202 |
+
rgb1 = process_rgb(input, mask, [2, 1, 0])
|
203 |
+
rgb2 = process_rgb(input, mask, [8, 7, 6])
|
204 |
+
rgb3 = process_rgb(input, mask, [14, 13, 12])
|
205 |
+
|
206 |
+
result[0] = np.where(mask == 1, 0, result[0])
|
207 |
+
|
208 |
+
et = time.time()
|
209 |
+
time_taken = np.round(et - st, 1)
|
210 |
+
print(f'Inference completed in {str(time_taken)} seconds')
|
211 |
+
|
212 |
+
output=result[0][0] + 1
|
213 |
+
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
214 |
+
|
215 |
+
|
216 |
+
output=apply_color_map(output).transpose((1,2,0))
|
217 |
+
|
218 |
+
return rgb1,rgb2,rgb3,output
|
219 |
+
|
220 |
+
def process_test_pipeline(custom_test_pipeline, bands=None):
|
221 |
+
|
222 |
+
# change extracted bands if necessary
|
223 |
+
if bands is not None:
|
224 |
+
|
225 |
+
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
|
226 |
+
|
227 |
+
if len(extract_index) > 0:
|
228 |
+
|
229 |
+
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
|
230 |
+
|
231 |
+
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
|
232 |
+
|
233 |
+
# adapt collected keys if necessary
|
234 |
+
if len(collect_index) > 0:
|
235 |
+
|
236 |
+
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
|
237 |
+
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
|
238 |
+
|
239 |
+
return custom_test_pipeline
|
240 |
+
|
241 |
+
config = Config.fromfile(config_path)
|
242 |
+
config.model.backbone.pretrained=None
|
243 |
+
model = init_segmentor(config, ckpt, device='cpu')
|
244 |
+
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
245 |
+
|
246 |
+
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
247 |
+
|
248 |
+
|
249 |
+
stocks = data.stocks()
|
250 |
+
gapminder = data.gapminder()
|
251 |
+
gapminder = gapminder.loc[
|
252 |
+
gapminder.country.isin(["Argentina", "Australia", "Afghanistan"])
|
253 |
+
]
|
254 |
+
climate = data.climate()
|
255 |
+
seattle_weather = data.seattle_weather()
|
256 |
+
|
257 |
+
simple = pd.DataFrame(
|
258 |
+
{
|
259 |
+
"a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
|
260 |
+
"b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
|
261 |
+
}
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Blocks() as demo:
|
265 |
+
|
266 |
+
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
267 |
+
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
268 |
+
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
269 |
+
''')
|
270 |
+
with gr.Row():
|
271 |
+
with gr.Column():
|
272 |
+
inp = gr.File()
|
273 |
+
btn = gr.Button("Submit")
|
274 |
+
|
275 |
+
with gr.Column():
|
276 |
+
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
277 |
+
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
278 |
+
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
279 |
+
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
280 |
+
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
281 |
+
|
282 |
+
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
283 |
+
|
284 |
+
with gr.Row():
|
285 |
+
with gr.Column():
|
286 |
+
with gr.Row():
|
287 |
+
gr.BarPlot(simple,
|
288 |
+
x="a",
|
289 |
+
y="b",
|
290 |
+
title="Simple Bar Plot with made up data",
|
291 |
+
tooltip=["a", "b"],
|
292 |
+
y_lim=[20, 100],)
|
293 |
+
with gr.Row():
|
294 |
+
gr.LinePlot(simple,
|
295 |
+
x='a',
|
296 |
+
y='b')
|
297 |
+
|
298 |
+
with gr.Column():
|
299 |
+
gr.Markdown(value='### Model prediction legend')
|
300 |
+
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
301 |
+
|
302 |
+
|
303 |
+
demo.launch()
|
multi_temporal_crop_classification_Prithvi_100M.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
dist_params = dict(backend='nccl')
|
4 |
+
log_level = 'INFO'
|
5 |
+
load_from = None
|
6 |
+
resume_from = None
|
7 |
+
cudnn_benchmark = True
|
8 |
+
custom_imports = dict(imports=['geospatial_fm'])
|
9 |
+
num_frames = 3
|
10 |
+
img_size = 224
|
11 |
+
num_workers = 2
|
12 |
+
|
13 |
+
# model
|
14 |
+
# TO BE DEFINED BY USER: model path
|
15 |
+
pretrained_weights_path = '<path to pretrained weights>'
|
16 |
+
num_layers = 6
|
17 |
+
patch_size = 16
|
18 |
+
embed_dim = 768
|
19 |
+
num_heads = 8
|
20 |
+
tubelet_size = 1
|
21 |
+
max_epochs = 80
|
22 |
+
eval_epoch_interval = 5
|
23 |
+
|
24 |
+
loss_weights_multi = [
|
25 |
+
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
|
26 |
+
1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
|
27 |
+
]
|
28 |
+
loss_func = dict(
|
29 |
+
type='CrossEntropyLoss',
|
30 |
+
use_sigmoid=False,
|
31 |
+
class_weight=loss_weights_multi,
|
32 |
+
avg_non_ignore=True)
|
33 |
+
output_embed_dim = embed_dim*num_frames
|
34 |
+
|
35 |
+
|
36 |
+
# TO BE DEFINED BY USER: Save directory
|
37 |
+
experiment = '<experiment name>'
|
38 |
+
project_dir = '<project directory name>'
|
39 |
+
work_dir = os.path.join(project_dir, experiment)
|
40 |
+
save_path = work_dir
|
41 |
+
|
42 |
+
|
43 |
+
gpu_ids = range(0, 1)
|
44 |
+
dataset_type = 'GeospatialDataset'
|
45 |
+
|
46 |
+
# TO BE DEFINED BY USER: data directory
|
47 |
+
data_root = '<path to data root>'
|
48 |
+
|
49 |
+
splits = dict(
|
50 |
+
train='<path to train split>',
|
51 |
+
val= '<path to val split>',
|
52 |
+
test= '<path to test split>'
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
img_norm_cfg = dict(
|
57 |
+
means=[
|
58 |
+
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
|
59 |
+
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
|
60 |
+
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
|
61 |
+
2968.881459, 2634.621962, 1739.579917
|
62 |
+
],
|
63 |
+
stds=[
|
64 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
|
65 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
|
66 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808
|
67 |
+
])
|
68 |
+
|
69 |
+
bands = [0, 1, 2, 3, 4, 5]
|
70 |
+
|
71 |
+
tile_size = 224
|
72 |
+
orig_nsize = 512
|
73 |
+
crop_size = (tile_size, tile_size)
|
74 |
+
train_pipeline = [
|
75 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
76 |
+
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
|
77 |
+
dict(type='RandomFlip', prob=0.5),
|
78 |
+
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
|
79 |
+
# to channels first
|
80 |
+
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
|
81 |
+
dict(type='TorchNormalize', **img_norm_cfg),
|
82 |
+
dict(type='TorchRandomCrop', crop_size=crop_size),
|
83 |
+
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)),
|
84 |
+
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)),
|
85 |
+
dict(type='CastTensor', keys=['gt_semantic_seg'], new_type="torch.LongTensor"),
|
86 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
87 |
+
]
|
88 |
+
|
89 |
+
test_pipeline = [
|
90 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
91 |
+
dict(type='ToTensor', keys=['img']),
|
92 |
+
# to channels first
|
93 |
+
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
|
94 |
+
dict(type='TorchNormalize', **img_norm_cfg),
|
95 |
+
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, -1, -1), look_up = {'2': 1, '3': 2}),
|
96 |
+
dict(type='CastTensor', keys=['img'], new_type="torch.FloatTensor"),
|
97 |
+
dict(type='CollectTestList', keys=['img'],
|
98 |
+
meta_keys=['img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename', 'ori_filename', 'img',
|
99 |
+
'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']),
|
100 |
+
]
|
101 |
+
|
102 |
+
CLASSES = ('Natural Vegetation',
|
103 |
+
'Forest',
|
104 |
+
'Corn',
|
105 |
+
'Soybeans',
|
106 |
+
'Wetlands',
|
107 |
+
'Developed/Barren',
|
108 |
+
'Open Water',
|
109 |
+
'Winter Wheat',
|
110 |
+
'Alfalfa',
|
111 |
+
'Fallow/Idle Cropland',
|
112 |
+
'Cotton',
|
113 |
+
'Sorghum',
|
114 |
+
'Other')
|
115 |
+
|
116 |
+
dataset = 'GeospatialDataset'
|
117 |
+
|
118 |
+
data = dict(
|
119 |
+
samples_per_gpu=8,
|
120 |
+
workers_per_gpu=4,
|
121 |
+
train=dict(
|
122 |
+
type=dataset,
|
123 |
+
CLASSES=CLASSES,
|
124 |
+
reduce_zero_label=True,
|
125 |
+
data_root=data_root,
|
126 |
+
img_dir='training_chips',
|
127 |
+
ann_dir='training_chips',
|
128 |
+
pipeline=train_pipeline,
|
129 |
+
img_suffix='_merged.tif',
|
130 |
+
seg_map_suffix='.mask.tif',
|
131 |
+
split=splits['train']),
|
132 |
+
val=dict(
|
133 |
+
type=dataset,
|
134 |
+
CLASSES=CLASSES,
|
135 |
+
reduce_zero_label=True,
|
136 |
+
data_root=data_root,
|
137 |
+
img_dir='validation_chips',
|
138 |
+
ann_dir='validation_chips',
|
139 |
+
pipeline=test_pipeline,
|
140 |
+
img_suffix='_merged.tif',
|
141 |
+
seg_map_suffix='.mask.tif',
|
142 |
+
split=splits['val']
|
143 |
+
),
|
144 |
+
test=dict(
|
145 |
+
type=dataset,
|
146 |
+
CLASSES=CLASSES,
|
147 |
+
reduce_zero_label=True,
|
148 |
+
data_root=data_root,
|
149 |
+
img_dir='validation_chips',
|
150 |
+
ann_dir='validation_chips',
|
151 |
+
pipeline=test_pipeline,
|
152 |
+
img_suffix='_merged.tif',
|
153 |
+
seg_map_suffix='.mask.tif',
|
154 |
+
split=splits['val']
|
155 |
+
))
|
156 |
+
|
157 |
+
optimizer = dict(
|
158 |
+
type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05)
|
159 |
+
optimizer_config = dict(grad_clip=None)
|
160 |
+
lr_config = dict(
|
161 |
+
policy='poly',
|
162 |
+
warmup='linear',
|
163 |
+
warmup_iters=1500,
|
164 |
+
warmup_ratio=1e-06,
|
165 |
+
power=1.0,
|
166 |
+
min_lr=0.0,
|
167 |
+
by_epoch=False)
|
168 |
+
log_config = dict(
|
169 |
+
interval=10,
|
170 |
+
hooks=[dict(type='TextLoggerHook'),
|
171 |
+
dict(type='TensorboardLoggerHook')])
|
172 |
+
|
173 |
+
checkpoint_config = dict(
|
174 |
+
by_epoch=True,
|
175 |
+
interval=100,
|
176 |
+
out_dir=save_path)
|
177 |
+
|
178 |
+
evaluation = dict(interval=eval_epoch_interval, metric='mIoU', pre_eval=True, save_best='mIoU', by_epoch=True)
|
179 |
+
reduce_train_set = dict(reduce_train_set=False)
|
180 |
+
reduce_factor = dict(reduce_factor=1)
|
181 |
+
runner = dict(type='EpochBasedRunner', max_epochs=max_epochs)
|
182 |
+
workflow = [('train', 1)]
|
183 |
+
norm_cfg = dict(type='BN', requires_grad=True)
|
184 |
+
|
185 |
+
model = dict(
|
186 |
+
type='TemporalEncoderDecoder',
|
187 |
+
frozen_backbone=False,
|
188 |
+
backbone=dict(
|
189 |
+
type='TemporalViTEncoder',
|
190 |
+
pretrained=pretrained_weights_path,
|
191 |
+
img_size=img_size,
|
192 |
+
patch_size=patch_size,
|
193 |
+
num_frames=num_frames,
|
194 |
+
tubelet_size=1,
|
195 |
+
in_chans=len(bands),
|
196 |
+
embed_dim=embed_dim,
|
197 |
+
depth=6,
|
198 |
+
num_heads=num_heads,
|
199 |
+
mlp_ratio=4.0,
|
200 |
+
norm_pix_loss=False),
|
201 |
+
neck=dict(
|
202 |
+
type='ConvTransformerTokensToEmbeddingNeck',
|
203 |
+
embed_dim=embed_dim*num_frames,
|
204 |
+
output_embed_dim=output_embed_dim,
|
205 |
+
drop_cls_token=True,
|
206 |
+
Hp=14,
|
207 |
+
Wp=14),
|
208 |
+
decode_head=dict(
|
209 |
+
num_classes=len(CLASSES),
|
210 |
+
in_channels=output_embed_dim,
|
211 |
+
type='FCNHead',
|
212 |
+
in_index=-1,
|
213 |
+
channels=256,
|
214 |
+
num_convs=1,
|
215 |
+
concat_input=False,
|
216 |
+
dropout_ratio=0.1,
|
217 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
218 |
+
align_corners=False,
|
219 |
+
loss_decode=loss_func),
|
220 |
+
auxiliary_head=dict(
|
221 |
+
num_classes=len(CLASSES),
|
222 |
+
in_channels=output_embed_dim,
|
223 |
+
type='FCNHead',
|
224 |
+
in_index=-1,
|
225 |
+
channels=256,
|
226 |
+
num_convs=2,
|
227 |
+
concat_input=False,
|
228 |
+
dropout_ratio=0.1,
|
229 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
230 |
+
align_corners=False,
|
231 |
+
loss_decode=loss_func),
|
232 |
+
train_cfg=dict(),
|
233 |
+
test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size)))
|
234 |
+
auto_resume = False
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pytorch==1.7.1
|
2 |
+
torchvision==0.8.2
|
3 |
+
openmim
|