Spaces:
Running
Running
import pickle | |
import streamlit as st | |
import requests | |
import pandas as pd | |
# set page setting | |
st.set_page_config(page_title='TopMovies') | |
# set history var | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
# import preprocessed data | |
data = pd.read_csv("./data/tags.csv") | |
# import similarity (to be cached) | |
def importSim(filename): | |
sim = pickle.load(open(filename, 'rb')) | |
return sim | |
similarity = importSim('similarity.pkl') | |
# recommender function | |
def recommend_image(movie, sim): | |
poster = [] | |
plot = [] | |
# index from dataframe | |
index = data[data['title'] == movie].index[0] | |
dist = dict(enumerate(sim[index])) | |
dist = dict(sorted(dist.items(), reverse=True, key = lambda item: item[1])) | |
#index from 1 because the forst is the movie itself | |
cnt = 0 | |
for key in dist: | |
cnt = cnt+1 | |
if cnt < 11: | |
title = data.iloc[key].title | |
posterRes, plotRes = get_poster_plot(title) | |
poster.append(posterRes) | |
plot.append(plotRes) | |
else: | |
break | |
return poster[1:], plot[1:] | |
# get poster | |
def get_poster_plot(title): | |
r = requests.get("http://www.omdbapi.com/?i=tt3896198&apikey=37765f04&t=" + title).json() | |
posterElement = r["Poster"] | |
plotElement = r["Plot"] | |
return posterElement, plotElement | |
# update last viewed list | |
def update_las_viewed(): | |
if len(st.session_state.history) > 3: | |
st.session_state.history.pop() | |
# sidebar | |
st.sidebar.write(""" | |
This is a content based recommender system. Pick a movie from the list or search for it and then wait for the reccomendations. | |
You will get six movies, posters and plots. | |
""") | |
# title | |
st.write("# Movie Recommendation System") | |
st.write("Pick a movie from the list and enjoy some new stuffs!") | |
# select box | |
title = st.selectbox("", data["title"]) | |
if title not in st.session_state.history: | |
st.session_state.history.insert(0, title) | |
update_las_viewed() | |
# show data on selected | |
colSelected = st.columns(1) | |
with colSelected: | |
st.image(get_poster_plot(title)[0]) | |
# recommend | |
with st.spinner("Getting the best movies..."): | |
recs, plots = recommend_image(title, similarity) | |
# recommendation cols | |
st.write("## Wath to watch next....") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.image(recs[0]) | |
st.write(plots[0]) | |
with col2: | |
st.image(recs[1]) | |
st.write(plots[1]) | |
with col3: | |
st.image(recs[2]) | |
st.write(plots[2]) | |
col4, col5, col6 = st.columns(3) | |
with col4: | |
st.image(recs[3]) | |
st.write(plots[3]) | |
with col5: | |
st.image(recs[4]) | |
st.write(plots[4]) | |
with col6: | |
st.image(recs[5]) | |
st.write(plots[5]) | |
col7, col8, col9 = st.columns(3) | |
with col7: | |
st.image(recs[6]) | |
st.write(plots[6]) | |
with col8: | |
st.image(recs[7]) | |
st.write(plots[7]) | |
with col9: | |
st.image(recs[8]) | |
st.write(plots[8]) | |
# last viewed | |
st.write("## Last viewed:") | |
r1, r2, r3 = st.columns(3) | |
with r1: | |
try: | |
st.image(get_poster_plot(st.session_state.history[0])[0]) | |
except IndexError: | |
pass | |
with r2: | |
try: | |
st.image(get_poster_plot(st.session_state.history[1])[0]) | |
except IndexError: | |
pass | |
with r3: | |
try: | |
st.image(get_poster_plot(st.session_state.history[2])[0]) | |
except IndexError: | |
pass | |