File size: 6,012 Bytes
9b968be
 
ea53bcc
9b968be
ea53bcc
 
 
9b968be
ea53bcc
9b968be
91ac79b
9b968be
ea53bcc
9b968be
ea53bcc
 
9b968be
ea53bcc
 
 
 
 
 
 
 
 
 
 
9b968be
ea53bcc
 
 
 
 
9b968be
ea53bcc
 
 
 
 
9b968be
ea53bcc
 
 
 
 
 
 
9b968be
 
 
 
3600cbf
ab20d84
ea53bcc
 
9b968be
 
 
ea53bcc
9b968be
 
 
 
 
 
 
 
 
 
 
 
 
ea53bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b968be
ea53bcc
 
 
 
 
 
 
 
 
 
 
9b968be
 
ea53bcc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import streamlit as st
import pandas as pd
import openai
import joblib
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download

# Function definitions

def load_image(image_file):
    return Image.open(image_file)

def classify_image(image):
    img_byte_arr = BytesIO()
    image.save(img_byte_arr, format='PNG')
    img_byte_arr = img_byte_arr.getvalue()

    headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
    response = requests.post(
        'https://api-inference.huggingface.co/models/dima806/car_models_image_detection',
        headers=headers,
        files={"file": img_byte_arr}
    )
    
    if response.status_code == 200:
        return response.json()
    else:
        st.error("Image classification failed. Please try again.")
        return None

def find_closest_match(df, brand, model):
    match = df[(df['make'].str.contains(brand, case=False)) & (df['model'].str.contains(model, case=False))]
    if not match.empty:
        return match.iloc[0]
    return None

def get_car_overview(car_data):
    prompt = f"Provide an overview of the following car:\nYear: {car_data['year']}\nMake: {car_data['make']}\nModel: {car_data['model']}\nTrim: {car_data['trim']}\nPrice: ${car_data['price']}\nCondition: {car_data['condition']}\n"
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message['content']

def load_model_and_encodings():
    try:
        with st.spinner('Loading model...'):
            model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
            model = joblib.load(model_content)

        original_data = load_datasets()  # Ensure this function loads your CSV data
        
        label_encoders = {}
        categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status', 
                                'transmission', 'drive', 'size', 'type', 'paint_color']
        
        for feature in categorical_features:
            if feature in original_data.columns:
                le = LabelEncoder()
                unique_values = original_data[feature].fillna('unknown').str.strip().unique()
                le.fit(unique_values)
                label_encoders[feature.lower()] = le
        
        return model, label_encoders
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        raise e

def predict_price(model, encoders, user_input):
    # Transform user input into model input format
    encoded_features = {feature: encoders[feature].transform([value])[0] if value in encoders[feature] else 0 
                        for feature, value in user_input.items()}

    # Create a DataFrame for prediction
    input_data = pd.DataFrame([encoded_features])
    
    # Predict price
    predicted_price = model.predict(input_data)
    return predicted_price[0]

# Streamlit App

st.title("Auto Appraise")
st.write("Capture a car image using your camera or upload an image to get its brand, model, overview, and expected price!")

# Load the CSV file
df = pd.read_csv('car_data.csv')

# Load model and encoders
model, label_encoders = load_model_and_encodings()

# Initialize OpenAI API key
openai.api_key = st.secrets["GPT_TOKEN"]  # Your OpenAI API key
HUGGINGFACE_API_KEY = st.secrets["HF_TOKEN"]  # Your Hugging Face API key

# Camera input for taking photo
camera_image = st.camera_input("Take a picture of the car!")

if camera_image is not None:
    image = load_image(camera_image)
    st.image(image, caption='Captured Image.', use_column_width=True)

    # Classify the car image
    car_info = classify_image(image)
    if car_info:
        brand = car_info['brand']  # Adjust according to response structure
        model_name = car_info['model']
        st.write(f"Identified Car: {brand} {model_name}")

        # Find the closest match in the CSV
        match = find_closest_match(df, brand, model_name)
        if match is not None:
            st.write("Closest Match Found:")
            st.write(match)

            # Get additional information using GPT-3.5-turbo
            overview = get_car_overview(match)
            st.write("Car Overview:")
            st.write(overview)

            # Interactive Price Prediction
            st.subheader("Price Prediction Over Time")
            selected_years = st.slider("Select range of years for price prediction", 
                                         min_value=2000, max_value=2023, value=(2010, 2023))

            years = np.arange(selected_years[0], selected_years[1] + 1)
            predicted_prices = []

            for year in years:
                user_input = {
                    'Make': brand,
                    'model': model_name,
                    'condition': match['condition'],
                    'fuel': match['fuel'],
                    'title_status': match['title_status'],
                    'transmission': match['transmission'],
                    'drive': match['drive'],
                    'size': match['size'],
                    'type': match['type'],
                    'paint_color': match['paint_color'],
                    'year': year
                }
                
                price = predict_price(model, label_encoders, user_input)
                predicted_prices.append(price)

            # Plotting the results
            plt.figure(figsize=(10, 5))
            plt.plot(years, predicted_prices, marker='o')
            plt.title(f"Predicted Price of {brand} {model_name} Over Time")
            plt.xlabel("Year")
            plt.ylabel("Predicted Price ($)")
            plt.grid()
            st.pyplot(plt)

        else:
            st.write("No match found in the database.")
else:
    st.write("Please take a picture of the car to proceed.")