Spaces:
Sleeping
Sleeping
File size: 9,926 Bytes
9b968be ea53bcc 9b968be ea53bcc 9b968be ea53bcc 9b968be 91ac79b ad0c1dd 5fdb85a 524c9af 9b968be ecae6dc ea53bcc 9b968be ea53bcc 63b55ed ad0c1dd 63b55ed ad0c1dd 57babb1 63b55ed ea53bcc 5fdb85a 9b968be ea53bcc ecae6dc ea53bcc 9b968be 3600cbf ab20d84 ea53bcc ecae6dc 9b968be 5f1c654 9b968be 5f1c654 9b968be 5f1c654 9b968be 524c9af 5f1c654 524c9af 5f1c654 524c9af 5f1c654 524c9af 5f1c654 524c9af 5f1c654 ea53bcc 524c9af ea53bcc b24890a ea53bcc 5f1c654 ea53bcc 63b55ed ea53bcc b24890a ea53bcc b24890a 8c5b0dd b24890a 8c5b0dd ea53bcc b24890a 63b55ed b24890a 5f1c654 524c9af 5f1c654 b24890a 4db8913 b24890a 9b968be b24890a ea53bcc b24890a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import streamlit as st
import pandas as pd
import openai
import joblib
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
from datetime import datetime
# Dataset loading function with caching
@st.cache_data
def load_datasets():
try:
with st.spinner('Loading dataset...'):
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
original_data.columns = original_data.columns.str.strip().str.capitalize()
return original_data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
raise e
def load_image(image_file):
return Image.open(image_file)
def classify_image(image):
try:
# Load the model and feature extractor
model_name = "dima806/car_models_image_detection"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted class
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Get the class label and score
predicted_class_label = model.config.id2label[predicted_class_idx]
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
# Return the top prediction
return [{'label': predicted_class_label, 'score': score}]
except Exception as e:
st.error(f"Classification error: {e}")
return None
def find_closest_match(df, brand, model):
# Combine brand and model names from the dataset
df['full_name'] = df['Make'] + ' ' + df['Model']
# Create a list of all car names
car_names = df['full_name'].tolist()
# Add the query car name
query_car = f"{brand} {model}"
car_names.append(query_car)
# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(car_names)
# Compute cosine similarity
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
# Get the index of the most similar car
most_similar_index = cosine_similarities.argmax()
# Return the most similar car's data
return df.iloc[most_similar_index]
def get_car_overview(car_data):
prompt = f"Provide an overview of the following car:\nYear: {car_data['Year']}\nMake: {car_data['Make']}\nModel: {car_data['Model']}\nTrim: {car_data['Trim']}\nPrice: ${car_data['Price']}\nCondition: {car_data['Condition']}\n"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
def load_model_and_encodings():
try:
with st.spinner('Loading model...'):
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
model = joblib.load(model_content)
original_data = load_datasets()
label_encoders = {}
categorical_features = original_data.select_dtypes(include=['object']).columns.tolist()
for feature in categorical_features:
le = LabelEncoder()
unique_values = original_data[feature].fillna('unknown').str.strip().unique()
le.fit(unique_values)
label_encoders[feature.lower()] = le
return model, label_encoders, categorical_features
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise e
def calculate_age(year):
current_year = datetime.now().year
return current_year - year
def predict_price(model, encoders, categorical_features, user_input):
encoded_features = {}
current_year = datetime.now().year
for feature, value in user_input.items():
if feature.lower() in encoders:
encoded_features[feature.capitalize()] = encoders[feature.lower()].transform([value])[0]
elif feature in categorical_features:
# If it's a categorical feature but not in encoders, set to 0 (unknown)
encoded_features[feature.capitalize()] = 0
else:
# For numerical features, use the value as is
encoded_features[feature.capitalize()] = value
# Calculate additional features
encoded_features['Age'] = calculate_age(encoded_features['Year'])
encoded_features['Age_squared'] = encoded_features['Age'] ** 2
# Assume average mileage per year (you may want to adjust this)
avg_mileage_per_year = 12000
encoded_features['Mileage_per_year'] = avg_mileage_per_year
# Assume odometer reading (you may want to adjust this)
encoded_features['Odometer'] = encoded_features['Age'] * avg_mileage_per_year
input_data = pd.DataFrame([encoded_features])
# Ensure all expected columns are present
expected_columns = ['Make', 'Model', 'Year', 'Condition', 'Fuel', 'Odometer', 'Title_status', 'Transmission', 'Drive', 'Size', 'Type', 'Paint_color', 'Age', 'Age_squared', 'Mileage_per_year']
for col in expected_columns:
if col not in input_data.columns:
input_data[col] = 0 # or some default value
predicted_price = model.predict(input_data)
return predicted_price[0]
# Streamlit App
st.title("Auto Appraise")
st.write("Upload a car image or take a picture to get its brand, model, overview, and expected price!")
# Load model and encoders
model, label_encoders, categorical_features = load_model_and_encodings()
# Initialize OpenAI API key
openai.api_key = st.secrets["GPT_TOKEN"]
# File uploader for image
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
# Camera input as an alternative (optional)
camera_image = st.camera_input("Or take a picture of the car")
# Process the image (either uploaded or from camera)
image = None
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.write("Image uploaded successfully.")
elif camera_image is not None:
image = Image.open(camera_image)
st.write("Image captured successfully.")
if image is not None:
st.image(image, caption='Processed Image', use_container_width=True)
# Classify the car image
with st.spinner('Analyzing image...'):
car_classifications = classify_image(image)
if car_classifications:
st.write("Image classification successful.")
st.subheader("Car Classification Results:")
for classification in car_classifications:
st.write(f"Model: {classification['label']}")
st.write(f"Confidence: {classification['score']*100:.2f}%")
# Use the top prediction for further processing
top_prediction = car_classifications[0]['label']
brand, model_name = top_prediction.split(' ', 1)
st.write(f"Identified Car: {brand} {model_name}")
# Find the closest match in the CSV
df = load_datasets()
match = find_closest_match(df, brand, model_name)
if match is not None:
st.write("Closest Match Found:")
st.write(f"Make: {match['Make']}")
st.write(f"Model: {match['Model']}")
st.write(f"Year: {match['Year']}")
st.write(f"Price: ${match['Price']}")
# Get additional information using GPT-3.5-turbo
overview = get_car_overview(match)
st.write("Car Overview:")
st.write(overview)
# Interactive Price Prediction
st.subheader("Price Prediction Over Time")
selected_years = st.slider("Select range of years for price prediction",
min_value=2000, max_value=2023, value=(2010, 2023))
years = np.arange(selected_years[0], selected_years[1] + 1)
predicted_prices = []
for year in years:
user_input = {
'make': match['Make'],
'model': match['Model'],
'year': year,
'condition': match.get('Condition', 'unknown'),
'fuel': match.get('Fuel', 'unknown'),
'title_status': match.get('Title_status', 'unknown'),
'transmission': match.get('Transmission', 'unknown'),
'drive': match.get('Drive', 'unknown'),
'size': match.get('Size', 'unknown'),
'type': match.get('Type', 'unknown'),
'paint_color': match.get('Paint_color', 'unknown'),
}
price = predict_price(model, label_encoders, categorical_features, user_input)
predicted_prices.append(price)
# Plotting the results
plt.figure(figsize=(10, 5))
plt.plot(years, predicted_prices, marker='o')
plt.title(f"Predicted Price of {match['Make']} {match['Model']} Over Time")
plt.xlabel("Year")
plt.ylabel("Predicted Price ($)")
plt.grid()
st.pyplot(plt)
else:
st.write("No match found in the database.")
else:
st.error("Could not classify the image. Please try again with a different image.")
else:
st.write("Please upload an image or take a picture to proceed.") |