Auto_Appraise / app.py
EdBoy2202's picture
Update app.py
b24890a verified
raw
history blame
7.85 kB
import streamlit as st
import pandas as pd
import openai
import joblib
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download
from transformers import pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
# Dataset loading function with caching
@st.cache_data
def load_datasets():
try:
with st.spinner('Loading dataset...'):
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
original_data.columns = original_data.columns.str.strip().str.capitalize()
return original_data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
raise e
def load_image(image_file):
return Image.open(image_file)
def classify_image(image):
try:
# Create a pipeline for image classification
classifier = pipeline('image-classification', model="dima806/car_models_image_detection", device=-1) # Use -1 for CPU, or 0 for GPU if available
# Classify the image
results = classifier(image)
# Return top 5 predictions
return results[:5]
except Exception as e:
st.error(f"Classification error: {e}")
return None
def find_closest_match(df, brand, model):
# Combine brand and model names from the dataset
df['full_name'] = df['Make'] + ' ' + df['Model']
# Create a list of all car names
car_names = df['full_name'].tolist()
# Add the query car name
query_car = f"{brand} {model}"
car_names.append(query_car)
# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(car_names)
# Compute cosine similarity
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
# Get the index of the most similar car
most_similar_index = cosine_similarities.argmax()
# Return the most similar car's data
return df.iloc[most_similar_index]
def get_car_overview(car_data):
prompt = f"Provide an overview of the following car:\nYear: {car_data['Year']}\nMake: {car_data['Make']}\nModel: {car_data['Model']}\nTrim: {car_data['Trim']}\nPrice: ${car_data['Price']}\nCondition: {car_data['Condition']}\n"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
def load_model_and_encodings():
try:
with st.spinner('Loading model...'):
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
model = joblib.load(model_content)
original_data = load_datasets()
label_encoders = {}
categorical_features = ['Make', 'Model', 'Condition', 'Fuel', 'Title_status',
'Transmission', 'Drive', 'Size', 'Type', 'Paint_color']
for feature in categorical_features:
if feature in original_data.columns:
le = LabelEncoder()
unique_values = original_data[feature].fillna('unknown').str.strip().unique()
le.fit(unique_values)
label_encoders[feature.lower()] = le
return model, label_encoders
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise e
def predict_price(model, encoders, user_input):
encoded_features = {feature: encoders[feature].transform([value])[0] if value in encoders[feature] else 0
for feature, value in user_input.items()}
input_data = pd.DataFrame([encoded_features])
predicted_price = model.predict(input_data)
return predicted_price[0]
# Streamlit App
st.title("Auto Appraise")
st.write("Upload a car image or take a picture to get its brand, model, overview, and expected price!")
# Load model and encoders
model, label_encoders = load_model_and_encodings()
# Initialize OpenAI API key
openai.api_key = st.secrets["GPT_TOKEN"]
# File uploader for image
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
# Camera input as an alternative (optional)
camera_image = st.camera_input("Or take a picture of the car")
# Process the image (either uploaded or from camera)
image = None
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.write("Image uploaded successfully.")
elif camera_image is not None:
image = Image.open(camera_image)
st.write("Image captured successfully.")
if image is not None:
st.image(image, caption='Processed Image', use_container_width=True)
# Classify the car image
with st.spinner('Analyzing image...'):
car_classifications = classify_image(image)
if car_classifications:
st.write("Image classification successful.")
st.subheader("Car Classification Results:")
for classification in car_classifications:
st.write(f"Model: {classification['label']}")
st.write(f"Confidence: {classification['score']*100:.2f}%")
# Use the top prediction for further processing
top_prediction = car_classifications[0]['label']
brand, model_name = top_prediction.split(' ', 1)
st.write(f"Identified Car: {brand} {model_name}")
# Find the closest match in the CSV
df = load_datasets()
match = find_closest_match(df, brand, model_name)
if match is not None:
st.write("Closest Match Found:")
st.write(f"Make: {match['Make']}")
st.write(f"Model: {match['Model']}")
st.write(f"Year: {match['Year']}")
st.write(f"Price: ${match['Price']}")
# Get additional information using GPT-3.5-turbo
overview = get_car_overview(match)
st.write("Car Overview:")
st.write(overview)
# Interactive Price Prediction
st.subheader("Price Prediction Over Time")
selected_years = st.slider("Select range of years for price prediction",
min_value=2000, max_value=2023, value=(2010, 2023))
years = np.arange(selected_years[0], selected_years[1] + 1)
predicted_prices = []
for year in years:
user_input = {
'Make': match['Make'],
'Model': match['Model'],
'Condition': match['Condition'],
'Fuel': match['Fuel'],
'Title_status': match['Title_status'],
'Transmission': match['Transmission'],
'Drive': match['Drive'],
'Size': match['Size'],
'Type': match['Type'],
'Paint_color': match['Paint_color'],
'Year': year
}
price = predict_price(model, label_encoders, user_input)
predicted_prices.append(price)
# Plotting the results
plt.figure(figsize=(10, 5))
plt.plot(years, predicted_prices, marker='o')
plt.title(f"Predicted Price of {match['Make']} {match['Model']} Over Time")
plt.xlabel("Year")
plt.ylabel("Predicted Price ($)")
plt.grid()
st.pyplot(plt)
else:
st.write("No match found in the database.")
else:
st.error("Could not classify the image. Please try again with a different image.")
else:
st.write("Please upload an image or take a picture to proceed.")