Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -143,16 +143,19 @@ if st.session_state.image is not None:
|
|
143 |
if car_classifications:
|
144 |
st.write("Image classification successful.")
|
145 |
st.subheader("Car Classification Results:")
|
146 |
-
for classification in car_classifications:
|
147 |
-
|
148 |
-
st.write(f"Confidence: {classification['score'] * 100:.2f}%")
|
149 |
|
150 |
# Separate make and model from the classification result
|
151 |
top_prediction = car_classifications[0]['label']
|
152 |
make_name, model_name = top_prediction.split(' ', 1)
|
153 |
-
|
154 |
-
st.
|
155 |
-
|
|
|
|
|
|
|
156 |
|
157 |
# Find the closest match in the CSV based on the classification
|
158 |
car_data = load_car_data()
|
@@ -162,8 +165,8 @@ if st.session_state.image is not None:
|
|
162 |
|
163 |
# st.write(f"Closest match in database:")
|
164 |
st.write(f"Year: {closest_car['year']}")
|
165 |
-
st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
|
166 |
-
st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
|
167 |
st.write(f"Price: ${closest_car['price']}")
|
168 |
st.write(f"Condition: {closest_car['condition']}")
|
169 |
st.write(f"Fuel: {closest_car['fuel']}")
|
|
|
143 |
if car_classifications:
|
144 |
st.write("Image classification successful.")
|
145 |
st.subheader("Car Classification Results:")
|
146 |
+
# for classification in car_classifications:
|
147 |
+
# st.write(f"Model: {classification['label']}")
|
148 |
+
# st.write(f"Confidence: {classification['score'] * 100:.2f}%")
|
149 |
|
150 |
# Separate make and model from the classification result
|
151 |
top_prediction = car_classifications[0]['label']
|
152 |
make_name, model_name = top_prediction.split(' ', 1)
|
153 |
+
|
154 |
+
col1, col2= st.columns(2)
|
155 |
+
col1.metric("Identified Car Make", make_name)
|
156 |
+
col2.metric("Identified Car Model", model_name)
|
157 |
+
# st.write(f"Identified Car Model: {make_name}")
|
158 |
+
# st.write(f"Identified Car Model: {model_name}")
|
159 |
|
160 |
# Find the closest match in the CSV based on the classification
|
161 |
car_data = load_car_data()
|
|
|
165 |
|
166 |
# st.write(f"Closest match in database:")
|
167 |
st.write(f"Year: {closest_car['year']}")
|
168 |
+
# st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
|
169 |
+
# st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
|
170 |
st.write(f"Price: ${closest_car['price']}")
|
171 |
st.write(f"Condition: {closest_car['condition']}")
|
172 |
st.write(f"Fuel: {closest_car['fuel']}")
|