EdBoy2202 commited on
Commit
299b5f0
·
verified ·
1 Parent(s): e33d539

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -49
app.py CHANGED
@@ -123,55 +123,55 @@ if camera_image is not None:
123
  if car_info:
124
  st.write(f"Identified Car: {car_info}")
125
 
126
- # Find the closest match in the CSV
127
- match = find_closest_match(df, brand, model_name)
128
- if match is not None:
129
- st.write("Closest Match Found:")
130
- st.write(match)
131
-
132
- # Get additional information using GPT-3.5-turbo
133
- overview = get_car_overview(match)
134
- st.write("Car Overview:")
135
- st.write(overview)
136
-
137
- # Interactive Price Prediction
138
- st.subheader("Price Prediction Over Time")
139
- selected_years = st.slider("Select range of years for price prediction",
140
- min_value=2000, max_value=2023, value=(2010, 2023))
141
-
142
- years = np.arange(selected_years[0], selected_years[1] + 1)
143
- predicted_prices = []
144
-
145
- for year in years:
146
- user_input = {
147
- 'Make': brand,
148
- 'Model': model_name,
149
- 'Condition': match['Condition'],
150
- 'Fuel': match['Fuel'],
151
- 'Title_status': match['Title_status'],
152
- 'Transmission': match['Transmission'],
153
- 'Drive': match['Drive'],
154
- 'Size': match['Size'],
155
- 'Type': match['Type'],
156
- 'Paint_color': match['Paint_color'],
157
- 'Year': year
158
- }
159
-
160
- price = predict_price(model, label_encoders, user_input)
161
- predicted_prices.append(price)
162
-
163
- # Plotting the results
164
- plt.figure(figsize=(10, 5))
165
- plt.plot(years, predicted_prices, marker='o')
166
- plt.title(f"Predicted Price of {brand} {model_name} Over Time")
167
- plt.xlabel("Year")
168
- plt.ylabel("Predicted Price ($)")
169
- plt.grid()
170
- st.pyplot(plt)
171
-
172
- else:
173
- st.write("No match found in the database.")
174
  else:
175
- st.error("Could not identify the brand or model. Please try again.")
 
 
176
  else:
177
  st.write("Please take a picture of the car to proceed.")
 
123
  if car_info:
124
  st.write(f"Identified Car: {car_info}")
125
 
126
+ # Find the closest match in the CSV
127
+ match = find_closest_match(df, brand, model_name)
128
+ if match is not None:
129
+ st.write("Closest Match Found:")
130
+ st.write(match)
131
+
132
+ # Get additional information using GPT-3.5-turbo
133
+ overview = get_car_overview(match)
134
+ st.write("Car Overview:")
135
+ st.write(overview)
136
+
137
+ # Interactive Price Prediction
138
+ st.subheader("Price Prediction Over Time")
139
+ selected_years = st.slider("Select range of years for price prediction",
140
+ min_value=2000, max_value=2023, value=(2010, 2023))
141
+
142
+ years = np.arange(selected_years[0], selected_years[1] + 1)
143
+ predicted_prices = []
144
+
145
+ for year in years:
146
+ user_input = {
147
+ 'Make': brand,
148
+ 'Model': model_name,
149
+ 'Condition': match['Condition'],
150
+ 'Fuel': match['Fuel'],
151
+ 'Title_status': match['Title_status'],
152
+ 'Transmission': match['Transmission'],
153
+ 'Drive': match['Drive'],
154
+ 'Size': match['Size'],
155
+ 'Type': match['Type'],
156
+ 'Paint_color': match['Paint_color'],
157
+ 'Year': year
158
+ }
159
+
160
+ price = predict_price(model, label_encoders, user_input)
161
+ predicted_prices.append(price)
162
+
163
+ # Plotting the results
164
+ plt.figure(figsize=(10, 5))
165
+ plt.plot(years, predicted_prices, marker='o')
166
+ plt.title(f"Predicted Price of {brand} {model_name} Over Time")
167
+ plt.xlabel("Year")
168
+ plt.ylabel("Predicted Price ($)")
169
+ plt.grid()
170
+ st.pyplot(plt)
171
+
 
 
172
  else:
173
+ st.write("No match found in the database.")
174
+ else:
175
+ st.error("Could not identify the brand or model. Please try again.")
176
  else:
177
  st.write("Please take a picture of the car to proceed.")