Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
-
import streamlit as st
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
from sklearn.preprocessing import LabelEncoder
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def load_car_data():
|
9 |
try:
|
10 |
df = pd.read_csv('CTP_Model1.csv') # Replace with the path to your actual CSV file
|
@@ -47,41 +94,81 @@ def find_closest_car(df, label_encoders, make, model, year):
|
|
47 |
# Return the closest match details
|
48 |
return df.iloc[closest_match_idx]
|
49 |
|
50 |
-
# Streamlit App
|
|
|
|
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
#
|
|
|
58 |
|
59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if st.session_state.image is not None:
|
61 |
-
|
|
|
|
|
62 |
with st.spinner('Analyzing image...'):
|
63 |
car_classifications = classify_image(st.session_state.image)
|
64 |
|
65 |
if car_classifications:
|
66 |
st.write("Image classification successful.")
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
top_prediction = car_classifications[0]['label']
|
68 |
make_name, model_name = top_prediction.split(' ', 1)
|
|
|
|
|
|
|
69 |
|
70 |
-
# Get
|
71 |
current_year = datetime.now().year
|
|
|
|
|
|
|
72 |
|
73 |
# Find the closest match in the CSV based on the classification
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
else:
|
87 |
-
st.error("Could not classify the image. Please try again with a different image.")
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
+
import torch
|
5 |
+
from datetime import datetime
|
6 |
+
import openai
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
|
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
|
12 |
+
# Initialize OpenAI API key
|
13 |
+
openai.api_key = st.secrets["GPT_TOKEN"]
|
14 |
+
|
15 |
+
# Function to classify the car image using pre-trained model
|
16 |
+
def classify_image(image):
|
17 |
+
try:
|
18 |
+
# Load the model and feature extractor
|
19 |
+
model_name = "dima806/car_models_image_detection"
|
20 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
21 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
22 |
+
|
23 |
+
# Preprocess the image
|
24 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
25 |
+
|
26 |
+
# Perform inference
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**inputs)
|
29 |
+
|
30 |
+
# Get the predicted class
|
31 |
+
logits = outputs.logits
|
32 |
+
predicted_class_idx = logits.argmax(-1).item()
|
33 |
+
|
34 |
+
# Get the class label and score
|
35 |
+
predicted_class_label = model.config.id2label[predicted_class_idx]
|
36 |
+
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
|
37 |
+
|
38 |
+
# Return the top prediction
|
39 |
+
return [{'label': predicted_class_label, 'score': score}]
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Classification error: {e}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Function to get an overview of the car using OpenAI
|
46 |
+
def get_car_overview(brand, model, year):
|
47 |
+
prompt = f"Provide an overview of the following car:\nYear: {year}\nMake: {brand}\nModel: {model}\n"
|
48 |
+
response = openai.ChatCompletion.create(
|
49 |
+
model="gpt-3.5-turbo",
|
50 |
+
messages=[{"role": "user", "content": prompt}]
|
51 |
+
)
|
52 |
+
return response.choices[0].message['content']
|
53 |
+
|
54 |
+
# Load and preprocess the car data once (globally for the session)
|
55 |
def load_car_data():
|
56 |
try:
|
57 |
df = pd.read_csv('CTP_Model1.csv') # Replace with the path to your actual CSV file
|
|
|
94 |
# Return the closest match details
|
95 |
return df.iloc[closest_match_idx]
|
96 |
|
97 |
+
# Streamlit App
|
98 |
+
st.title("Auto Appraise")
|
99 |
+
st.write("Upload a car image or take a picture to get its brand, model, and overview!")
|
100 |
|
101 |
+
# Initialize session_state image attribute if it doesn't exist
|
102 |
+
if 'image' not in st.session_state:
|
103 |
+
st.session_state.image = None
|
104 |
+
|
105 |
+
# File uploader for image
|
106 |
+
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
|
107 |
|
108 |
+
# Camera input as an alternative (optional)
|
109 |
+
camera_image = st.camera_input("Or take a picture of the car")
|
110 |
|
111 |
+
# Process the image (either uploaded or from camera)
|
112 |
+
if uploaded_file is not None:
|
113 |
+
st.write("Attempting to open uploaded file...")
|
114 |
+
try:
|
115 |
+
st.session_state.image = Image.open(uploaded_file)
|
116 |
+
st.write("Image uploaded successfully.")
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Error opening uploaded file: {str(e)}")
|
119 |
+
elif camera_image is not None:
|
120 |
+
st.write("Attempting to open camera image...")
|
121 |
+
try:
|
122 |
+
st.session_state.image = Image.open(camera_image)
|
123 |
+
st.write("Image captured successfully.")
|
124 |
+
except Exception as e:
|
125 |
+
st.error(f"Error opening camera image: {str(e)}")
|
126 |
+
|
127 |
+
# Display the processed image
|
128 |
if st.session_state.image is not None:
|
129 |
+
st.image(st.session_state.image, caption='Processed Image', use_container_width=True)
|
130 |
+
|
131 |
+
# Classify the car image
|
132 |
with st.spinner('Analyzing image...'):
|
133 |
car_classifications = classify_image(st.session_state.image)
|
134 |
|
135 |
if car_classifications:
|
136 |
st.write("Image classification successful.")
|
137 |
+
st.subheader("Car Classification Results:")
|
138 |
+
for classification in car_classifications:
|
139 |
+
st.write(f"Model: {classification['label']}")
|
140 |
+
st.write(f"Confidence: {classification['score'] * 100:.2f}%")
|
141 |
+
|
142 |
+
# Separate make and model from the classification result
|
143 |
top_prediction = car_classifications[0]['label']
|
144 |
make_name, model_name = top_prediction.split(' ', 1)
|
145 |
+
|
146 |
+
st.write(f"Identified Car Make: {make_name}")
|
147 |
+
st.write(f"Identified Car Model: {model_name}")
|
148 |
|
149 |
+
# Get additional information using GPT-3.5-turbo
|
150 |
current_year = datetime.now().year
|
151 |
+
overview = get_car_overview(make_name, model_name, current_year)
|
152 |
+
st.write("Car Overview:")
|
153 |
+
st.write(overview)
|
154 |
|
155 |
# Find the closest match in the CSV based on the classification
|
156 |
+
car_data = load_car_data()
|
157 |
+
if car_data is not None:
|
158 |
+
processed_car_data, label_encoders = preprocess_car_data(car_data)
|
159 |
+
closest_car = find_closest_car(processed_car_data, label_encoders, make_name, model_name, current_year)
|
160 |
+
|
161 |
+
st.write(f"Closest match in database:")
|
162 |
+
st.write(f"Year: {closest_car['year']}")
|
163 |
+
st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
|
164 |
+
st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
|
165 |
+
st.write(f"Price: ${closest_car['price']}")
|
166 |
+
st.write(f"Condition: {closest_car['condition']}")
|
167 |
+
st.write(f"Fuel: {closest_car['fuel']}")
|
168 |
+
st.write(f"Transmission: {closest_car['transmission']}")
|
169 |
+
st.write(f"Drive: {closest_car['drive']}")
|
170 |
+
st.write(f"Type: {closest_car['type']}")
|
171 |
else:
|
172 |
+
st.error("Could not classify the image. Please try again with a different image.")
|
173 |
+
else:
|
174 |
+
st.write("Please upload an image or take a picture to proceed.")
|