EdBoy2202 commited on
Commit
32f8cee
·
verified ·
1 Parent(s): f0bade0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -24
app.py CHANGED
@@ -1,10 +1,57 @@
 
 
 
 
 
 
1
  import pandas as pd
2
  import numpy as np
3
- import streamlit as st
4
  from sklearn.metrics.pairwise import cosine_similarity
5
  from sklearn.preprocessing import LabelEncoder
6
 
7
- # Load the CTP_Model1.csv file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  def load_car_data():
9
  try:
10
  df = pd.read_csv('CTP_Model1.csv') # Replace with the path to your actual CSV file
@@ -47,41 +94,81 @@ def find_closest_car(df, label_encoders, make, model, year):
47
  # Return the closest match details
48
  return df.iloc[closest_match_idx]
49
 
50
- # Streamlit App Updates
 
 
51
 
52
- # Load and preprocess the car data once (globally for the session)
53
- car_data = load_car_data()
54
- if car_data is not None:
55
- processed_car_data, label_encoders = preprocess_car_data(car_data)
 
 
56
 
57
- # Your existing code for image upload and classification ...
 
58
 
59
- # After classification, find the closest car match
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  if st.session_state.image is not None:
61
- # Classify the car image (already done earlier)
 
 
62
  with st.spinner('Analyzing image...'):
63
  car_classifications = classify_image(st.session_state.image)
64
 
65
  if car_classifications:
66
  st.write("Image classification successful.")
 
 
 
 
 
 
67
  top_prediction = car_classifications[0]['label']
68
  make_name, model_name = top_prediction.split(' ', 1)
 
 
 
69
 
70
- # Get the year (you may want to adjust this based on available data)
71
  current_year = datetime.now().year
 
 
 
72
 
73
  # Find the closest match in the CSV based on the classification
74
- closest_car = find_closest_car(processed_car_data, label_encoders, make_name, model_name, current_year)
75
-
76
- st.write(f"Closest match in database:")
77
- st.write(f"Year: {closest_car['year']}")
78
- st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
79
- st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
80
- st.write(f"Price: ${closest_car['price']}")
81
- st.write(f"Condition: {closest_car['condition']}")
82
- st.write(f"Fuel: {closest_car['fuel']}")
83
- st.write(f"Transmission: {closest_car['transmission']}")
84
- st.write(f"Drive: {closest_car['drive']}")
85
- st.write(f"Type: {closest_car['type']}")
 
 
 
86
  else:
87
- st.error("Could not classify the image. Please try again with a different image.")
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
4
+ import torch
5
+ from datetime import datetime
6
+ import openai
7
  import pandas as pd
8
  import numpy as np
 
9
  from sklearn.metrics.pairwise import cosine_similarity
10
  from sklearn.preprocessing import LabelEncoder
11
 
12
+ # Initialize OpenAI API key
13
+ openai.api_key = st.secrets["GPT_TOKEN"]
14
+
15
+ # Function to classify the car image using pre-trained model
16
+ def classify_image(image):
17
+ try:
18
+ # Load the model and feature extractor
19
+ model_name = "dima806/car_models_image_detection"
20
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
21
+ model = AutoModelForImageClassification.from_pretrained(model_name)
22
+
23
+ # Preprocess the image
24
+ inputs = feature_extractor(images=image, return_tensors="pt")
25
+
26
+ # Perform inference
27
+ with torch.no_grad():
28
+ outputs = model(**inputs)
29
+
30
+ # Get the predicted class
31
+ logits = outputs.logits
32
+ predicted_class_idx = logits.argmax(-1).item()
33
+
34
+ # Get the class label and score
35
+ predicted_class_label = model.config.id2label[predicted_class_idx]
36
+ score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
37
+
38
+ # Return the top prediction
39
+ return [{'label': predicted_class_label, 'score': score}]
40
+
41
+ except Exception as e:
42
+ st.error(f"Classification error: {e}")
43
+ return None
44
+
45
+ # Function to get an overview of the car using OpenAI
46
+ def get_car_overview(brand, model, year):
47
+ prompt = f"Provide an overview of the following car:\nYear: {year}\nMake: {brand}\nModel: {model}\n"
48
+ response = openai.ChatCompletion.create(
49
+ model="gpt-3.5-turbo",
50
+ messages=[{"role": "user", "content": prompt}]
51
+ )
52
+ return response.choices[0].message['content']
53
+
54
+ # Load and preprocess the car data once (globally for the session)
55
  def load_car_data():
56
  try:
57
  df = pd.read_csv('CTP_Model1.csv') # Replace with the path to your actual CSV file
 
94
  # Return the closest match details
95
  return df.iloc[closest_match_idx]
96
 
97
+ # Streamlit App
98
+ st.title("Auto Appraise")
99
+ st.write("Upload a car image or take a picture to get its brand, model, and overview!")
100
 
101
+ # Initialize session_state image attribute if it doesn't exist
102
+ if 'image' not in st.session_state:
103
+ st.session_state.image = None
104
+
105
+ # File uploader for image
106
+ uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
107
 
108
+ # Camera input as an alternative (optional)
109
+ camera_image = st.camera_input("Or take a picture of the car")
110
 
111
+ # Process the image (either uploaded or from camera)
112
+ if uploaded_file is not None:
113
+ st.write("Attempting to open uploaded file...")
114
+ try:
115
+ st.session_state.image = Image.open(uploaded_file)
116
+ st.write("Image uploaded successfully.")
117
+ except Exception as e:
118
+ st.error(f"Error opening uploaded file: {str(e)}")
119
+ elif camera_image is not None:
120
+ st.write("Attempting to open camera image...")
121
+ try:
122
+ st.session_state.image = Image.open(camera_image)
123
+ st.write("Image captured successfully.")
124
+ except Exception as e:
125
+ st.error(f"Error opening camera image: {str(e)}")
126
+
127
+ # Display the processed image
128
  if st.session_state.image is not None:
129
+ st.image(st.session_state.image, caption='Processed Image', use_container_width=True)
130
+
131
+ # Classify the car image
132
  with st.spinner('Analyzing image...'):
133
  car_classifications = classify_image(st.session_state.image)
134
 
135
  if car_classifications:
136
  st.write("Image classification successful.")
137
+ st.subheader("Car Classification Results:")
138
+ for classification in car_classifications:
139
+ st.write(f"Model: {classification['label']}")
140
+ st.write(f"Confidence: {classification['score'] * 100:.2f}%")
141
+
142
+ # Separate make and model from the classification result
143
  top_prediction = car_classifications[0]['label']
144
  make_name, model_name = top_prediction.split(' ', 1)
145
+
146
+ st.write(f"Identified Car Make: {make_name}")
147
+ st.write(f"Identified Car Model: {model_name}")
148
 
149
+ # Get additional information using GPT-3.5-turbo
150
  current_year = datetime.now().year
151
+ overview = get_car_overview(make_name, model_name, current_year)
152
+ st.write("Car Overview:")
153
+ st.write(overview)
154
 
155
  # Find the closest match in the CSV based on the classification
156
+ car_data = load_car_data()
157
+ if car_data is not None:
158
+ processed_car_data, label_encoders = preprocess_car_data(car_data)
159
+ closest_car = find_closest_car(processed_car_data, label_encoders, make_name, model_name, current_year)
160
+
161
+ st.write(f"Closest match in database:")
162
+ st.write(f"Year: {closest_car['year']}")
163
+ st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
164
+ st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
165
+ st.write(f"Price: ${closest_car['price']}")
166
+ st.write(f"Condition: {closest_car['condition']}")
167
+ st.write(f"Fuel: {closest_car['fuel']}")
168
+ st.write(f"Transmission: {closest_car['transmission']}")
169
+ st.write(f"Drive: {closest_car['drive']}")
170
+ st.write(f"Type: {closest_car['type']}")
171
  else:
172
+ st.error("Could not classify the image. Please try again with a different image.")
173
+ else:
174
+ st.write("Please upload an image or take a picture to proceed.")