EdBoy2202 commited on
Commit
4e75039
·
verified ·
1 Parent(s): e4f99b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -40
app.py CHANGED
@@ -75,54 +75,29 @@ def load_model_and_encodings():
75
  raise e
76
 
77
  def predict_price(model, brand, model_name, year):
78
- # Create a dictionary with default values
79
  input_data = {
80
  'year': year,
81
- 'make': brand,
82
- 'model': model_name,
83
- 'trim': 'Base', # Default trim
84
- 'condition': 'Used', # Default condition
85
- 'fuel': 'Gasoline', # Default fuel type
86
  'odometer': year * 12000, # Estimate based on year and average annual mileage
87
- 'title_status': 'Clean', # Default title status
88
- 'transmission': 'Automatic', # Default transmission
89
- 'drive': 'Fwd', # Default drive
90
- 'size': 'Mid-Size', # Default size
91
- 'type': 'Sedan', # Default type
92
- 'paint_color': 'White' # Default color
 
 
 
 
 
 
93
  }
94
 
95
- # Calculate age and other required fields
96
- current_year = datetime.now().year
97
- input_data['age'] = current_year - year
98
- input_data['age_squared'] = input_data['age'] ** 2
99
- input_data['mileage_per_year'] = 12000 # Assuming average annual mileage
100
-
101
  # Prepare the input for the model
102
  input_df = pd.DataFrame([input_data])
103
 
104
- # Rename columns to match what the model expects
105
- input_df = input_df.rename(columns={
106
- 'make': 'Make',
107
- 'model': 'Model',
108
- 'year': 'Year',
109
- 'trim': 'Trim',
110
- 'condition': 'Condition',
111
- 'fuel': 'Fuel',
112
- 'odometer': 'Odometer',
113
- 'title_status': 'Title_status',
114
- 'transmission': 'Transmission',
115
- 'drive': 'Drive',
116
- 'size': 'Size',
117
- 'type': 'Type',
118
- 'paint_color': 'Paint_color',
119
- 'age': 'Age',
120
- 'age_squared': 'Age_squared',
121
- 'mileage_per_year': 'Mileage_per_year'
122
- })
123
-
124
- # Make sure to only include columns that the model expects
125
- model_columns = model.feature_names_in_
126
  input_df = input_df[model_columns]
127
 
128
  # Predict the price
 
75
  raise e
76
 
77
  def predict_price(model, brand, model_name, year):
78
+ # Create a dictionary with default values for the specified categories
79
  input_data = {
80
  'year': year,
 
 
 
 
 
81
  'odometer': year * 12000, # Estimate based on year and average annual mileage
82
+ 'age': datetime.now().year - year,
83
+ 'age_squared': (datetime.now().year - year) ** 2,
84
+ 'mileage_per_year': 12000,
85
+ 'model': model_name,
86
+ 'condition': 'Used',
87
+ 'fuel': 'Gasoline',
88
+ 'title_status': 'Clean',
89
+ 'transmission': 'Automatic',
90
+ 'drive': 'Fwd',
91
+ 'size': 'Mid-Size',
92
+ 'type': 'Sedan',
93
+ 'paint_color': 'White'
94
  }
95
 
 
 
 
 
 
 
96
  # Prepare the input for the model
97
  input_df = pd.DataFrame([input_data])
98
 
99
+ # Make sure to only include the specified columns
100
+ model_columns = [col for col in model.feature_names_in_ if col in input_data.keys()]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  input_df = input_df[model_columns]
102
 
103
  # Predict the price