Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
import torch
|
5 |
-
from datetime import datetime
|
6 |
import openai
|
7 |
|
8 |
# Initialize OpenAI API key
|
9 |
openai.api_key = st.secrets["GPT_TOKEN"]
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Function to classify the car image using pre-trained model
|
12 |
def classify_image(image):
|
13 |
try:
|
@@ -51,6 +62,9 @@ def get_car_overview(brand, model, year):
|
|
51 |
st.title("Auto Appraise")
|
52 |
st.write("Upload a car image or take a picture to get its brand, model, and overview!")
|
53 |
|
|
|
|
|
|
|
54 |
# Get the session state
|
55 |
if 'image' not in st.session_state:
|
56 |
st.session_state.image = None
|
@@ -105,6 +119,14 @@ if st.session_state.image is not None:
|
|
105 |
st.write("Car Overview:")
|
106 |
st.write(overview)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
st.error("Could not classify the image. Please try again with a different image.")
|
110 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from PIL import Image
|
4 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
5 |
import torch
|
|
|
6 |
import openai
|
7 |
|
8 |
# Initialize OpenAI API key
|
9 |
openai.api_key = st.secrets["GPT_TOKEN"]
|
10 |
|
11 |
+
# Dataset loading function with caching
|
12 |
+
@st.cache_data
|
13 |
+
def load_datasets():
|
14 |
+
try:
|
15 |
+
with st.spinner('Loading dataset...'):
|
16 |
+
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
|
17 |
+
return original_data
|
18 |
+
except Exception as e:
|
19 |
+
st.error(f"Error loading dataset: {str(e)}")
|
20 |
+
raise e
|
21 |
+
|
22 |
# Function to classify the car image using pre-trained model
|
23 |
def classify_image(image):
|
24 |
try:
|
|
|
62 |
st.title("Auto Appraise")
|
63 |
st.write("Upload a car image or take a picture to get its brand, model, and overview!")
|
64 |
|
65 |
+
# Load dataset
|
66 |
+
dataset = load_datasets()
|
67 |
+
|
68 |
# Get the session state
|
69 |
if 'image' not in st.session_state:
|
70 |
st.session_state.image = None
|
|
|
119 |
st.write("Car Overview:")
|
120 |
st.write(overview)
|
121 |
|
122 |
+
# Match the car make and model to a record in the dataset
|
123 |
+
matched_entry = dataset[(dataset['Make'] == make_name) & (dataset['model'] == model_name)]
|
124 |
+
|
125 |
+
if not matched_entry.empty:
|
126 |
+
st.write("Matched Entry from Dataset:")
|
127 |
+
st.write(matched_entry)
|
128 |
+
else:
|
129 |
+
st.write("No matching entry found in the dataset.")
|
130 |
else:
|
131 |
st.error("Could not classify the image. Please try again with a different image.")
|
132 |
else:
|