Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,86 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from
|
4 |
-
import
|
5 |
-
from datetime import datetime
|
6 |
-
import openai
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
# Function to classify the car image using pre-trained model
|
12 |
-
def classify_image(image):
|
13 |
try:
|
14 |
-
#
|
15 |
-
|
16 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
17 |
-
model = AutoModelForImageClassification.from_pretrained(model_name)
|
18 |
-
|
19 |
-
# Preprocess the image
|
20 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
21 |
-
|
22 |
-
# Perform inference
|
23 |
-
with torch.no_grad():
|
24 |
-
outputs = model(**inputs)
|
25 |
-
|
26 |
-
# Get the predicted class
|
27 |
-
logits = outputs.logits
|
28 |
-
predicted_class_idx = logits.argmax(-1).item()
|
29 |
-
|
30 |
-
# Get the class label and score
|
31 |
-
predicted_class_label = model.config.id2label[predicted_class_idx]
|
32 |
-
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
|
33 |
-
|
34 |
-
# Return the top prediction
|
35 |
-
return [{'label': predicted_class_label, 'score': score}]
|
36 |
-
|
37 |
except Exception as e:
|
38 |
-
st.error(f"
|
39 |
return None
|
40 |
|
41 |
-
#
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
st.write("Upload a car image or take a picture to get its brand, model, and overview!")
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
|
60 |
|
61 |
-
#
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
if uploaded_file is not None:
|
66 |
-
st.write("Attempting to open uploaded file...")
|
67 |
-
try:
|
68 |
-
st.session_state.image = Image.open(uploaded_file)
|
69 |
-
st.write("Image uploaded successfully.")
|
70 |
-
except Exception as e:
|
71 |
-
st.error(f"Error opening uploaded file: {str(e)}")
|
72 |
-
elif camera_image is not None:
|
73 |
-
st.write("Attempting to open camera image...")
|
74 |
-
try:
|
75 |
-
st.session_state.image = Image.open(camera_image)
|
76 |
-
st.write("Image captured successfully.")
|
77 |
-
except Exception as e:
|
78 |
-
st.error(f"Error opening camera image: {str(e)}")
|
79 |
|
80 |
-
#
|
81 |
if st.session_state.image is not None:
|
82 |
-
|
83 |
-
|
84 |
-
# Classify the car image
|
85 |
with st.spinner('Analyzing image...'):
|
86 |
car_classifications = classify_image(st.session_state.image)
|
87 |
|
88 |
if car_classifications:
|
89 |
st.write("Image classification successful.")
|
90 |
-
st.subheader("Car Classification Results:")
|
91 |
-
for classification in car_classifications:
|
92 |
-
st.write(f"Model: {classification['label']}")
|
93 |
-
st.write(f"Confidence: {classification['score'] * 100:.2f}%")
|
94 |
-
|
95 |
-
# Separate make and model from the classification result
|
96 |
top_prediction = car_classifications[0]['label']
|
97 |
make_name, model_name = top_prediction.split(' ', 1)
|
98 |
-
|
99 |
-
st.write(f"Identified Car Make: {make_name}")
|
100 |
-
st.write(f"Identified Car Model: {model_name}")
|
101 |
|
102 |
-
# Get
|
103 |
current_year = datetime.now().year
|
104 |
-
overview = get_car_overview(make_name, model_name, current_year)
|
105 |
-
st.write("Car Overview:")
|
106 |
-
st.write(overview)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
-
st.error("Could not classify the image. Please try again with a different image.")
|
110 |
-
else:
|
111 |
-
st.write("Please upload an image or take a picture to proceed.")
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
5 |
|
6 |
+
# Load the CTP_Model1.csv file
|
7 |
+
def load_car_data():
|
|
|
|
|
|
|
8 |
try:
|
9 |
+
df = pd.read_csv('CTP_Model1.csv') # Replace with the path to your actual CSV file
|
10 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
except Exception as e:
|
12 |
+
st.error(f"Error loading CSV file: {e}")
|
13 |
return None
|
14 |
|
15 |
+
# Preprocess car data and encode categorical features
|
16 |
+
def preprocess_car_data(df):
|
17 |
+
label_encoders = {}
|
18 |
+
|
19 |
+
# Encode categorical columns (make, model, trim, fuel, title_status, etc.)
|
20 |
+
for col in ['make', 'model', 'trim', 'fuel', 'title_status', 'transmission', 'drive', 'size', 'type', 'paint_color']:
|
21 |
+
le = LabelEncoder()
|
22 |
+
df[col] = le.fit_transform(df[col])
|
23 |
+
label_encoders[col] = le
|
24 |
+
|
25 |
+
return df, label_encoders
|
|
|
26 |
|
27 |
+
# Calculate similarity between the classified car and entries in the CSV
|
28 |
+
def find_closest_car(df, label_encoders, make, model, year):
|
29 |
+
# Encode the user-provided make and model
|
30 |
+
make_encoded = label_encoders['make'].transform([make])[0]
|
31 |
+
model_encoded = label_encoders['model'].transform([model])[0]
|
32 |
+
|
33 |
+
# Create a feature vector for the classified car (make, model, year)
|
34 |
+
classified_car_vector = np.array([make_encoded, model_encoded, year]).reshape(1, -1)
|
35 |
+
|
36 |
+
# Prepare the data for similarity calculation
|
37 |
+
feature_columns = ['make', 'model', 'year']
|
38 |
+
df_feature_vectors = df[feature_columns].values
|
39 |
+
|
40 |
+
# Compute cosine similarity between the classified car and all entries in the CSV
|
41 |
+
similarity_scores = cosine_similarity(classified_car_vector, df_feature_vectors)
|
42 |
+
|
43 |
+
# Get the index of the closest match
|
44 |
+
closest_match_idx = similarity_scores.argmax()
|
45 |
+
|
46 |
+
# Return the closest match details
|
47 |
+
return df.iloc[closest_match_idx]
|
48 |
|
49 |
+
# Streamlit App Updates
|
|
|
50 |
|
51 |
+
# Load and preprocess the car data once (globally for the session)
|
52 |
+
car_data = load_car_data()
|
53 |
+
if car_data is not None:
|
54 |
+
processed_car_data, label_encoders = preprocess_car_data(car_data)
|
55 |
|
56 |
+
# Your existing code for image upload and classification ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# After classification, find the closest car match
|
59 |
if st.session_state.image is not None:
|
60 |
+
# Classify the car image (already done earlier)
|
|
|
|
|
61 |
with st.spinner('Analyzing image...'):
|
62 |
car_classifications = classify_image(st.session_state.image)
|
63 |
|
64 |
if car_classifications:
|
65 |
st.write("Image classification successful.")
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
top_prediction = car_classifications[0]['label']
|
67 |
make_name, model_name = top_prediction.split(' ', 1)
|
|
|
|
|
|
|
68 |
|
69 |
+
# Get the year (you may want to adjust this based on available data)
|
70 |
current_year = datetime.now().year
|
|
|
|
|
|
|
71 |
|
72 |
+
# Find the closest match in the CSV based on the classification
|
73 |
+
closest_car = find_closest_car(processed_car_data, label_encoders, make_name, model_name, current_year)
|
74 |
+
|
75 |
+
st.write(f"Closest match in database:")
|
76 |
+
st.write(f"Year: {closest_car['year']}")
|
77 |
+
st.write(f"Make: {label_encoders['make'].inverse_transform([closest_car['make']])[0]}")
|
78 |
+
st.write(f"Model: {label_encoders['model'].inverse_transform([closest_car['model']])[0]}")
|
79 |
+
st.write(f"Price: ${closest_car['price']}")
|
80 |
+
st.write(f"Condition: {closest_car['condition']}")
|
81 |
+
st.write(f"Fuel: {closest_car['fuel']}")
|
82 |
+
st.write(f"Transmission: {closest_car['transmission']}")
|
83 |
+
st.write(f"Drive: {closest_car['drive']}")
|
84 |
+
st.write(f"Type: {closest_car['type']}")
|
85 |
else:
|
86 |
+
st.error("Could not classify the image. Please try again with a different image.")
|
|
|
|