EdBoy2202's picture
Update app.py
6fbe46c verified
import streamlit as st
from huggingface_hub import InferenceClient, HfApi
import time
import requests
from requests.exceptions import RequestException
from gtts import gTTS # Google Text-to-Speech
import tempfile
import os
# Set page config at the very beginning
st.set_page_config(page_title="Phi-3.5 Chatbot", page_icon="🤖")
# Add a text input for the Hugging Face API token
hf_token = st.text_input("Enter your Hugging Face API token", type="password")
@st.cache_resource
def get_client(token):
return InferenceClient("microsoft/Phi-3.5-mini-instruct", token=token)
def validate_token(token):
try:
api = HfApi(token=token)
api.whoami()
return True
except Exception as e:
st.error(f"Token validation failed: {str(e)}")
return False
def make_request_with_retries(client, prompt, max_new_tokens, temperature, top_p, max_retries=5, initial_delay=1):
for attempt in range(max_retries):
try:
response = client.text_generation(
prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
)
return response
except RequestException as e:
if attempt < max_retries - 1:
delay = initial_delay * (2 ** attempt) # Exponential backoff
st.warning(f"Request failed. Retrying in {delay} seconds... (Attempt {attempt + 1}/{max_retries})")
time.sleep(delay)
else:
raise e
def respond(message, history, system_message, max_tokens, temperature, top_p):
if not hf_token:
st.error("Please enter your Hugging Face API token.")
return
if not validate_token(hf_token):
return
client = get_client(hf_token)
# Construct the prompt
prompt = f"{system_message}\n\n"
for user_msg, assistant_msg in history:
prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n\n"
prompt += f"Human: {message}\nAssistant:"
try:
response = make_request_with_retries(client, prompt, max_tokens, temperature, top_p)
yield response
except Exception as e:
st.error(f"An error occurred: {str(e)}")
yield "I'm sorry, but I encountered an error while processing your request."
def text_to_speech(text):
# Create a named temporary file
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts = gTTS(text=text, lang='en')
tts.save(tmp_file.name)
return tmp_file.name
st.title("Phi-3.5 Mini Chatbot")
if "messages" not in st.session_state:
st.session_state.messages = []
system_message = st.text_input("System message", value="You are a helpful AI assistant.")
max_tokens = st.slider("Max new tokens", min_value=1, max_value=1024, value=256, step=1)
temperature = st.slider("Temperature", min_value=0.01, max_value=1.0, value=0.7, step=0.01)
top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9, step=0.01)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What is your message?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in respond(prompt,
[(msg["content"], st.session_state.messages[i+1]["content"])
for i, msg in enumerate(st.session_state.messages[:-1:2])],
system_message,
max_tokens,
temperature,
top_p):
message_placeholder.markdown(response)
full_response = response
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Generate audio from the assistant's response
audio_file = text_to_speech(full_response)
st.audio(audio_file, format='audio/mp3')